GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-03-26
    Description: On Mt. Etna (Italy), an enhanced Normalized Difference in Vegetation Index (NDVI) signature was detected in the summers of 2001 and 2002 along a distinct line where, in November 2002, a flank eruption subsequently occurred. These observations suggest that pre-eruptive volcanic activity may have enhanced photosynthesis along the future eruptive fissure. If a direct relation between NDVI and future volcanic eruptions could be established, it would provide a straightforward and low-cost method for early detection of upcoming eruptions. However, it is unclear if, or to what extent, the observed enhancement of NDVI can be attributed to volcanic activity prior to the subsequent eruption. We consequently aimed at determining whether an increase in ambient temperature or additional water availability owing to the rise of magma and degassing of water vapour prior to the eruption could have increased photosynthesis of Mt. Etna's trees. Using dendro-climatic analyses we quantified the sensitivity of tree ring widths to temperature and precipitation at high elevation stands on Mt. Etna. Our findings suggest that tree growth at high elevation on Mt. Etna is weakly influenced by climate, and that neither an increase in water availability nor an increase in temperature induced by pre-eruptive activity is a plausible mechanism for enhanced photosynthesis before the 2002/2003 flank eruption. Our findings thus imply that other, yet unknown, factors must be sought as causes of the pre-eruption enhancement of NDVI on Mt. Etna.
    Description: Published
    Description: e0169297
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Keywords: Mt. Etna ; Normalized Difference in Vegetation Index (NDVI) ; photosynthesis ; eruption ; relation between NDVI and future volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-09
    Description: EXTRACT (SEE PDF FOR FULL ABSTRACT):The characterization of inter-decadal climate variability in the Southern Hemisphere is severely constrained by the shortness of the instrumental climate records. To help relieve this constraint, we have developed and analyzed a reconstruction of warm-season (November-April) temperatures from Tasmanian tree rings that now extends back to 800 BC. A detailed analysis of this reconstruction in the time and frequency domains indicates that much of the inter-decadal variability is principally confined to four frequency bands with mean periods of 31, 57, 77, and 200 years. ... In so doing, we show how a future greenhouse warming signal over Tasmania could be masked by these natural oscillations unless they are taken into account.
    Keywords: Atmospheric Sciences ; PACLIM ; dendrochronology
    Repository Name: AquaDocs
    Type: conference_item
    Format: application/pdf
    Format: application/pdf
    Format: 7-20
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/15747 | 8 | 2014-11-25 22:22:18 | 15747
    Publication Date: 2021-07-10
    Description: Climate modeling using coastal tree-ring chronologies has yielded the first summer temperature reconstructions for coastal stations along the Gulf of Alaska and the Pacific Northwest. These land temperature reconstructions are strongly correlated with nearby sea surface temperatures, indicating large-scale ocean-atmospheric influences. Significant progress has also been made in modeling winter land temperatures and sea surface temperatures from coastal and shipboard stations. In addition to temperature, the pressure variability center over the central North Pacific Ocean (PAC), which is related to the strength and location of the Aleutian Low pressure system, could be extended using coastal tree rings.
    Keywords: Atmospheric Sciences ; Oceanography ; PACLIM ; dendrochronology
    Repository Name: AquaDocs
    Type: conference_item
    Format: application/pdf
    Format: application/pdf
    Format: 67-78
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/15629 | 8 | 2014-11-13 19:41:53 | 15629
    Publication Date: 2021-07-09
    Description: Climate conditions in land areas of the Pacific Northwest are strongly influenced by atmosphere/ocean variability, including fluctuations in the Aleutian Low, Pacific-North American (PNA) atmospheric circulation modes, and the El Niño-Southern Oscillation (ENSO). It thus seems likely that climatically sensitive tree-ring data from these coastal land areas would likewise reflect such climatic parameters. In this paper, tree-ring width and maximum lakewood density chronologies from northwestern Washington State and near Vancouver Island, British Columbia, are compared to surface air temperature and precipitation from nearby coastal and near-coastal land stations and to monthly sea surface temperature (SST) and sea level pressure (SLP) data from the northeast Pacific sector. Results show much promise for eventual reconstruction of these parameters, potentially extending available instrumental records for the northeastern Pacific by several hundred years or more.
    Keywords: Atmospheric Sciences ; Environment ; Oceanography ; PACLIM ; dendrochronology
    Repository Name: AquaDocs
    Type: conference_item
    Format: application/pdf
    Format: application/pdf
    Format: 35-45
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Quaternary Science Reviews 121 (2015): 89-97, doi:10.1016/j.quascirev.2015.05.020.
    Description: Warming over Mongolia and adjacent Central Asia has been unusually rapid over the past few decades, particularly in the summer, with surface temperature anomalies higher than for much of the globe. With few temperature station records available in this remote region prior to the 1950s, paleoclimatic data must be used to understand annual-to-centennial scale climate variability, to local response to large-scale forcing mechanisms, and the significance of major features of the past millennium such as the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA) both of which can vary globally. Here we use an extensive collection of living and subfossil wood samples from temperature-sensitive trees to produce a millennial-length, validated reconstruction of summer temperatures for Mongolia and Central Asia from 931 to 2005 CE. This tree-ring reconstruction shows general agreement with the MCA (warming) and LIA (cooling) trends, a significant volcanic signature, and warming in the 20th and 21st Century. Recent warming (2000-2005) exceeds that from any other time and is concurrent with, and likely exacerbated, the impact of extreme drought (1999-2002) that resulted in massive livestock loss across Mongolia.
    Description: This research was supported by the National Science Foundation under grants AGS-PRF #1137729, ATM0117442, and AGS0402474.
    Keywords: Mongolia ; Temperature ; Tree-ring ; Dendrochronology ; Reconstruction ; Global warming
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Atmospheres 118 (2013): 9000–9010, doi:10.1002/jgrd.50692.
    Description: Tree rings are an important proxy for understanding the timing and environmental consequences of volcanic eruptions as they are precisely dated at annual resolution and, particularly in tree line regions of the world, sensitive to cold extremes that can result from climatically significant volcanic episodes. Volcanic signals have been detected in ring widths and by the presence of frost-damaged rings, yet are often most clearly and quantitatively represented within maximum latewood density series. Ring width and density reconstructions provide quantitative information for inferring the variability and sensitivity of the Earth's climate system on local to hemispheric scales. After a century of dendrochronological science, there is no evidence, as recently theorized, that volcanic or other adverse events cause such severely cold conditions near latitudinal tree line that rings might be missing in all trees at a given site in a volcanic year (“stand-wide” missing rings), resulting in misdating of the chronology. Rather, there is a clear indication of precise dating and development of rings in at least some trees at any given site, even under adverse cold conditions, based on both actual tree ring observations and modeling analyses. The muted evidence for volcanic cooling in large-scale temperature reconstructions based at least partly on ring widths reflects several factors that are completely unrelated to any misdating. These include biological persistence of such records, as well as varying spatial patterns of response of the climate system to volcanic events, such that regional cooling, particularly for ring widths rather than density, can be masked in the large-scale reconstruction average.
    Description: We thank the National Science Foundation for fundingmuch of the research presented herein. RW’s Scottish work is currently funded through the UK Leverhulme Trust and Natural Environment Research Council (NERC) projects, “RELiC: Reconstructing 8000 years of Environmental and Landscape change in the Cairngorms (F/00 268/BG)” and “SCOT2K: Reconstructing 2000 years of Scottish climate from tree rings (NE/K003097/1).”
    Description: 2014-02-29
    Keywords: Volcanism ; Dendrochronology ; Maximum latewood density ; Tree rings ; Cross-dating ; Temperature reconstructions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-22
    Description: Climatic hazards, such as severe droughts and floods, affect extensive areas across monsoon Asia and can have profound impacts on the populations of that region. The area surrounding Indonesia, including large portions of the eastern Indian Ocean and Java Sea, plays a key role in the global climate system because of the enormous heat and moisture exchange that occurs between the ocean and atmosphere there. Here, we evaluate the influence of rainfall variability on multiple tree-ring parameters of teak (Tectona grandis) trees growing in a lowland rain forest in Central Java (Indonesia). We assess the potential of, annually resolved, tree-ring width, stable carbon (δ13C) and oxygen (δ18O) isotope records to improve our understanding of the Asian monsoon variability. Climate response analysis with regional, monthly rainfall data reveals that all three tree-ring parameters are significantly correlated to rainfall, albeit during different monsoon seasons. Precipitation in the beginning of the rainy season (Sep–Nov) is important for tree-ring width, confirming previous studies. Compared to ring width, the stable isotope records possess a higher degree of common signal, especially during portions of the peak rainy season (δ13C: Dec–May; δ18O: Nov–Feb) and are negatively correlated to rainfall. In addition, tree-ring δ18O also responds positively to peak dry season rainfall, although the δ18O rainy season signal is stronger and more time-stable. The correlations of opposite sign reflect the distinct seasonal contrast of the δ18O signatures in rainfall (18OPre) during the dry (18O-enriched rain) and rainy (18O-depleted rain) seasons. This difference in 18OPre signal reflects the combination of two signals in the annual tree-ring δ18O record. Highly resolved intra-annual δ18O isotope analyses suggest that the signals of dry and rainy season can be distinguished clearly. Thereby reconstructions can improve our understanding of variations and trends of the hydrological cycle over the Indonesian archipelago.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...