GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 23 (1995), S. 409-449 
    ISSN: 0084-6597
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The oldest known and best documented of the drowned islands, referred to here as the 85°40'W seamount, seems to have formed over the hotspot at least 9 Myr ago. This small seamount is the middle of three similar east-west aligned edifices, previously surveyed along 2° S ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 409 (2001), S. 701-703 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Helium isotope variations in igneous rocks are important for relating isotopic heterogeneity to convective mixing in the Earth's mantle. High 3He/4He ratios at many ocean islands, along with lower and relatively uniform values in mid-ocean-ridge basalts (MORBs), ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-0581
    Keywords: plate tectonics ; seafloor spreading ; rift propagation ; rift failure ; lithospheric transfer ; magmatic differentiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.−1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B07103, doi:10.1029/2010JB007931.
    Description: Expeditions 304 and 305 of the Integrated Ocean Drilling Program cored and logged a 1.4 km section of the domal core of Atlantis Massif. Postdrilling research results summarized here constrain the structure and lithology of the Central Dome of this oceanic core complex. The dominantly gabbroic sequence recovered contrasts with predrilling predictions; application of the ground truth in subsequent geophysical processing has produced self-consistent models for the Central Dome. The presence of many thin interfingered petrologic units indicates that the intrusions forming the domal core were emplaced over a minimum of 100–220 kyr, and not as a single magma pulse. Isotopic and mineralogical alteration is intense in the upper 100 m but decreases in intensity with depth. Below 800 m, alteration is restricted to narrow zones surrounding faults, veins, igneous contacts, and to an interval of locally intense serpentinization in olivine-rich troctolite. Hydration of the lithosphere occurred over the complete range of temperature conditions from granulite to zeolite facies, but was predominantly in the amphibolite and greenschist range. Deformation of the sequence was remarkably localized, despite paleomagnetic indications that the dome has undergone at least 45° rotation, presumably during unroofing via detachment faulting. Both the deformation pattern and the lithology contrast with what is known from seafloor studies on the adjacent Southern Ridge of the massif. There, the detachment capping the domal core deformed a 100 m thick zone and serpentinized peridotite comprises ∼70% of recovered samples. We develop a working model of the evolution of Atlantis Massif over the past 2 Myr, outlining several stages that could explain the observed similarities and differences between the Central Dome and the Southern Ridge.
    Keywords: Atlantis Massif ; Integrated Ocean Drilling Program ; Oceanic Core Complex
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 100 (B11). pp. 22261-22282.
    Publication Date: 2021-06-15
    Description: Within the Australian-Antarctic Discordance (AAD), a boundary exists between isotopically defined “Pacific-type” and “Indian-type” mid-ocean ridge basalt (MORB) erupted along the Southeast Indian Ridge (SEIR). This boundary has migrated westward beneath the easternmost AAD spreading segment at a minimum rate of 25 mm/yr since 4 Ma; however, its long-term history remains a matter of speculation. To determine if Pacific-type upper mantle has migrated westward beneath the eastern Indian Ocean basin as Australia and Antarctica drifted apart during the last 70 m.y., we present new Sr-Nd-Pb isotope data, combined with trace element and 40Ar-39Ar radiometric age determinations, for samples from Legs 28 and 29 of the Deep Sea Drilling Project (DSDP). Basaltic basement at these DSDP sites provides a record of their upper mantle source composition and shows regional variations consistent with upper mantle flow in this region. East of the South Tasman Rise, all DSDP basalts have 87Sr/86Sr (0.7025–0.7029) and 206Pb/204Pb (18.80–19.48) ratios typical of Pacific-type MORB indicating that Pacific-type upper mantle existed east of the Australian-Antarctic continental margin and beneath the Tasman Sea during the early stages of seafloor spreading in this region. Basalts from DSDP sites west of the AAD have high 87Sr/86Sr (0.7030–0.7035), low 206Pb/204Pb (17.99–18.10) and trace element characteristics typical of present day Indian-type SEIR MORB. Between these two regions, DSDP basalts recovered along the western margin of the South Tasman Rise have isotopic characteristics that are, in one case consistent with an Indian-type MORB source (Site 280A) and, in the second case, transitional between Pacific-type and Indian-type mantle sources. The occurrence of seafloor basalts with transitional or Indian-type isotopic characteristics well to the east of the present Indian-Pacific MORB isotopic boundary within the AAD strongly implies that Pacific-type upper mantle has migrated westward into the region since the South Tasman Rise separated from Antarctica circa 40 Ma.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-05-14
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AAAS (American Association for the Advancement of Science)
    In:  Science, 262 (5142). pp. 2023-2026.
    Publication Date: 2020-04-27
    Description: Helium-3/helium-4 ratios in submarine basalt glasses from the Galapagos Archipelago range up to 23 times the atmospheric ratio in the west and southwest. These results indicate the presence of a relatively undegassed mantle plume at the Galápagos hot spot and place Galápagos alongside Hawaii, Iceland, and Samoa as the only localities known to have such high helium-3/helium-4 ratios. Lower ratios across the rest of the Galápagos Archipelago reflect systematic variations in the degree of dilution of the plume by entrainment of depleted material from the asthenosphere. These spatial variations reveal the dynamics of the underlying mantle plume and its interaction with the nearby Galápagos Spreading Center.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...