GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Geochemistry and Geophysics of Active Volcanic Lakes | Geological Society special publications
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-01
    Description: Fluids are key factors in volcanic and hydrothermal processes, and fluid circulation into, and release from, volcanoes take extraordinarily variegate forms. Volcanic gases are persistently dissipated by crater fumaroles and openvents, to sustain vigorous plumes in the most extreme cases. Meteoric fluids permeate through volcanic rocks and, when variably admixed with ascending magma-sourced fluids, drive the incessant activity of volcano-hosted hydrothermal systems. Less visible, but not less important, forms of degassing include the volatile release from soils and cold groundwater systems in volcano peripheries. Investigating the chemistry of volcanic-hydrothermal fluids and quantifying the associated volatile fluxes are crucial to understanding how volcanoes operate, and to fully constrain hydrothermal circulation in the subsurface. Volcano-hydrothermal fluids have been a matter of study, interest and fascination for Prof. Mariano Valenza over his entire lifetime. For more than four decades, Mariano Valenza, Professor of Geochemistry and Volcanology at Università di Palermo, investigated, with incessant enthusiasm, unique curiosity, and distinctive intellectual rigour, the chemistry of fluids in volcanic environments. Over the years, he contributed enormously to the development of fluid geochemistry by pioneering research in a variety of related fields, including -to name only a few- the redox properties of magmatic gases, their diffuse release through soils, and their continuous monitoring via instrumental networks. In doing so, he was an example for generations of scientists, leaving an indelible mark in the field of volcanic and hydrothermal fluid geochemistry. With this thematic set of fifteen papers -published in this and in the next issue of the Italian Journal of Geoscienceswe wish to properly honour Mariano Valenza’s memory. The collection of papers covers a variety of complementary topics and summarizes the state-of-the-art in the field of fluid geochemistry of volcanic and geothermal areas.
    Description: Published
    Description: 4V. Processi pre-eruttivi
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-09
    Description: Greece has a very complex geodynamic setting deriving from a long and complicat-ed geological history being characterized by intense seismic activity and enhanced geothermal gradient. This activity, with the contribution of an active volcanic arc, favours the existence of many gas manifestations. Depending on the prevailing gas species, the latter can be subdivided in three main groups: CO2-, N2- and CH4-dominated. In the present work, we focus on methane and light hydrocarbons (C2-C6) to define their origin. CH4 concentrations (〈2 to 915,200 μmol/mol) and isotop-ic ratios (δ13C -79.8 to +16.9 ‰, δD -298 to +264‰) cover a wide range of values indicating different origins and/or secondary post-genetic processes. Samples from gas discharged along the Ionian coast and in northern Aegean Sea have a prevail-ing microbial origin. Cold and thermal gas manifestations of central and northern Greece display a prevalent thermogenic origin. Methane in gases released along the active volcanic arc is prevailingly abiogenic, although thermogenic contributions cannot be excluded. Gases collected in the geothermal areas of Sperchios basin and northern Euboea are likely affected by strong secondary oxidation processes, as suggested by their highly positive C and H isotopic values (up to +16.9‰ and +264‰ respectively) and low C1/(C2+C3) ratios.
    Description: Submitted
    Description: Thessaloniki, Greece
    Description: 4V. Vulcani e ambiente
    Description: open
    Keywords: Hellenic territory ; hydrothermal gases ; cold gas emissions ; origin of hydrocarbon gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-24
    Description: Hule and Rı´o Cuarto are maar lakes located 11 and 18 km N of Poa´s volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Rı´o Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon).
    Description: Published
    Description: e102456
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: open
    Keywords: bio activity, volcanic lakes, costa rica ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-09
    Description: This paper describes the chemical and isotope features of water and dissolved gases from lake Paterno (max. depth 54 m), a sinkhole located in the NE sector of the S. Vittorino plain (Rieti, Central Italy), where evidences of past and present hydrothermal activity exists. In winter (February 2011) lake Paterno waters were almost completely mixed, whereas in summer time (July 2011) thermal and chemical stratifications established. During the stratification period, water and dissolved gas chemistry along the vertical water column were mainly controlled by biological processes, such as methanogenesis, sulfate-reduction, calcite precipitation, denitrification, and NH4 and H2 production. Reducing conditions at the interface between the bottom sediments and the anoxic waters are responsible for the relatively high concentrations of dissolved iron (Fe) and manganese (Mn), likely present in their reduced oxidation state. Minerogenic and biogenic products were recognized at the lake bottom even during the winter sampling. At relatively shallow depth the distribution of CH4 and CO2 was controlled by methanotrophic bacteria and photosynthesis, respectively. The carbon isotope signature of CO2 indicates a significant contribution of deep-originated inorganic CO2 that is related to the hydrothermal system feeding the CO2-rich mineralized springs discharging in the surrounding areas of lake Paterno. The seasonal lake stratification likely controls the vertical and horizontal distribution of fish populations in the different periods of the year.
    Description: Published
    Description: 245-260
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: open
    Keywords: monomictic lake ; dissolved gas chemistry ; sinkhole ; lake Paterno ; water lake chemistry ; 02. Cryosphere::02.04. Sea ice::02.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-09
    Description: In this paper, fluid source(s) and processes controlling the chemical composition of VOCs (Volatile Organic Compounds) in gas discharges from Mt. Etna and Vulcano Island (Sicily, Italy) were investigated. The main composition of the Etnean and Volcano gas emissions is produced by mixing, to various degrees, of “magmatic” and “hydrothermal” components. VOCs are dominated by alkanes, alkenes and aromatics, with minor, though significant, concentrations of O-, S- and Cl(F)-substituted compounds. The main mechanism for the production of alkanes is likely related to pyrolysis of organic matter-bearing sediments that interact with the ascending magmatic fluids. Alkanes are then converted to alkene and aromatic compounds via catalytic reactions (dehydrogenation and dehydroaromatization, respectively). Nevertheless, an abiogenic origin for the light hydrocarbons cannot be ruled out. Oxidative processes of hydrocarbons at relatively high temperatures and oxidizing conditions, typical of these volcanic-hydrothermal fluids, may explain the production of alcohols, esters, aldehydes, as well as O- and S-bearing heterocycles. By comparing the concentrations of hydrochlorofluorocarbons (HCFCs) in the fumarolic discharges with respect to those of background air, it is possible to highlight that they have a geogenic origin likely due to halogenation of both methane and alkenes. Finally, CFC (chlorofluorocarbon) abundances appear to be consistent with background air, although the strong air contamination that affects the Mt. Etna fumaroles may mask a possible geogenic contribution for these compounds. On the other hand, no CFCs were detected in the Vulcano gases, which are characterized by low air contribution. Nevertheless, a geogenic source for these compounds cannot be excluded on the basis of the present data.
    Description: Published
    Description: D17305
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: etna, vulcano, VOC ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-09
    Description: We investigated the effect of microbial activity on the chemistry of hydrothermal fluids related to the Vicano–Cimino system, central Italy. The database included the composition and d13C CO2 and d13C CH4 values for soil gas from an area characterized by intense degassing of fluids having a deep origin. The d13C CH4 values along vertical profiles in the soil indicated that CH4 was controlled by microbial oxidation occurring at shallow (〈50 cm) depth, where free O2 was available. This was consistent with the vertical gradients of CH4, H2S and O2 concentrations. The d13C CO2 values in soil gas, characterized by a composition similar to that of the hydrothermal fluids, were not significantly influenced by biodegradation. On the contrary, gas strongly affected by air contamination showed a significant d13C CO2 fractionation. Microbial activity caused strong consumption of hydrothermal alkanes, alkenes, cyclics and hydrogenated halocarbons, whereas benzene was recalcitrant. Oxygenated compounds from hydrocarbon degradation consisted of alcohols, with minor aldehydes, ketones and carboxylic acids. A predominance of alcohols at a high rate of degassing flux, corresponding to a short residence time of hydrothermal gas within the soil, indicated incomplete oxidation. N-bearing compounds were likely produced by humic substances in the soil and/or related to contamination by pesticides, whereas a-pinene traced air entering the soil. The study demonstrates that microbial communities in the soil play an important role for mitigating the release to the atmosphere of C-bearing gases, especially CH4, through diffuse soil degassing, a mechanism that in central Italy significantly contributes to the discharge of CO2-rich gas from deep sources
    Description: Published
    Description: 81-93
    Description: 6A. Geochimica per l'ambiente
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-09
    Description: This study reports a complete geochemical dataset of 215 water and 9 gas samples collected in 2015 from thermal and cold discharges located in the eastern sector of the Sabatini Volcanic District (SVD), Italy. Based on these data, two main aquifers were recognized, as follows: 1) a cold Ca-HCO3 to Ca(Na)-HCO3 aquifer related to a shallow circuit within Pliocene-Pleistocene volcanic and sedimentary formations and 2) a deep CO2-pressurized aquifer hosted in Mesozoic carbonate-evaporitic rocks characterized by a Ca- HCO3(SO4) to Na(Ca)-HCO3(Cl) composition. A thick sequence of low-permeability formations represents a physical barrier between the two reservoirs. Interaction of the CO2-rich gas phase with the shallow aquifer, locally producing high-TDS and low-pH cold waters, is controlled by fractures and faults related to buried horst-graben structures. The d18O-H2O and dD-H2O values indicate meteoric water as the main source for both the shallow and deep reservoirs. Carbon dioxide, which is characterized by d13C-CO2 values ranging from 4.7 to þ1.0‰ V-PDB, is mostly produced by thermo-metamorphic decarbonation involving Mesozoic rock formations, masking possible CO2 contribution from mantle degassing. The relatively low R/Ra values (0.07e1.04) indicate dominant crustal He, with a minor mantle He contribution. The CO2/3He ratios, up to 6 1012, support a dominant crustal source for these two gases. The d34SH2S values (from þ9.3 to þ11.3‰ V-CDT) suggests that H2S is mainly related to thermogenic reduction of Triassic anhydrites. The d13C-CH4 and dD-CH4 values (from 33.4 to 24.9‰ V-PDB and from 168 to 140‰ V-SMOW, respectively) and the relatively low C1/C2þ ratios (〈100) are indicative of a prevailing CH4 production through thermogenic degradation of organic matter. The low N2/Ar and high N2/ He ratios, as well as the 40Ar/36Ar ratios (〈305) close to atmospheric ratio, suggest that both N2 and Ar mostly derive from air. Notwithstanding, the positive d15N-N2 values (from þ0.91 to þ3.7‰ NBS air) point to a significant extra-atmospheric N2 contribution. Gas geothermometry in the CH4-CO2-H2 and H2S-CO2-H2 systems indicate equilibrium temperatures 〈200 C, i.e. lower than those measured in deep geothermal wells (~300 C), due to either an incomplete attainment of the chemical equilibria or secondary processes (dilution and/or scrubbing) affecting the chemistry of the uprising fluids. Although the highly saline Na-Cl fluids discharged from the explorative geothermal wells in the study area support the occurrence of a well-developed hydrothermal reservoir suitable for direct exploitation, the chemistry of the fluid discharges highlights that the uprising hydrothermal fluids are efficiently cooled and diluted by the meteoric water recharge from the nearby Apennine sedimentary belt. This explains the different chemical and isotopic features shown by the fluids from the eastern and western sectors of SVD, respectively, the latter being influenced by this process at a lesser extent. Direct uses may be considered a valid alternative for the exploitation of this resource.
    Description: Published
    Description: 187-201
    Description: 6A. Geochimica per l'ambiente
    Description: 2IT. Laboratori sperimentali e analitici
    Description: 1VV. Altro
    Description: JCR Journal
    Keywords: Fluid geochemistry ; Central Italy ; Water-gas-rock interaction ; Geothermometry ; Sabatini Volcanic District ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-09
    Description: Real-time measurements of GEM and H2S discharged fromnatural and anthropogenic sources are a valuable tool to investigate the dispersion dynamics of these contaminants in air. In this study, a new approach to measure GEM and H2S concentrations in air, carried out by coupling a portable Zeeman atomic absorption spectrometer with high frequency modulation of light polarization (Lumex RA-915M) and a pulsed fluorescence gas analyzer (Thermo Scientific Model 450i), was applied to two distinct areas: (i) in the surroundings of Piancastagnaio (Siena, Central Italy), located in the eastern flanks ofMt. Amiata (a 200,000 years old volcano), where three geothermal plants are operating and whose exhaust gases are dispersed in the atmosphere after passing through the turbines and an abatement system to mitigate the environmental impact on air, and (ii) at Solfatara Crater (Campi Flegrei, Southern Italy), a volcanic apparatus characterized by intense hydrothermal activity. In 2014, seven GEMand H2S surveys were carried out in the two areas along pre-defined pathways performed by car at both the study sites. The lowest and highest recorded GEM and H2S concentrations at Piancastagnaio were up to 194 and 77 ng/m3, respectively, whilst at Solfatara Crater were up to 690 and 3392 μg/m3, respectively. Although the GEM concentrations at Piancastagnaio were lower than the limit value recommended by local regulations for outdoor environment (300 ng/m3), they were almost one order of magnitude higher than the GEM background both in Tuscany (~3.5 ng/m3) and Mt. Amiata (3–5 ng/m3), suggesting that the main source of GEM was likely related to the geothermal plants. At Solfatara Crater, the highest GEM values were recognized in proximity of the main fumarolic gas discharges. As far as the H2S concentrations are concerned, the guideline value of 150 μg/m3, recommended by WHO (2000), was frequently overcome in the study areas. Dot (in the surroundings of Piancastagnaio) and contour (at Solfatara Crater) maps for GEM and H2S concentrations built for each survey highlighted the important effects played by the meteorological parameters, the latter being measured by a Davis® Vantage Vue weather station. In particular, the GEM and H2S plumes were strongly affected by the wind speed and direction thatwere able to modify the dispersion of the two parameters in air in a matter of hours, indicating that the proposed analytical approach is able to produce a more realistic picture of the distribution of these air pollutants than that provided by using passive traps. Finally, the H2S/GEMratio, calculated by normalizing the measured GEM and H2S concentrations to their highest values (nH2S/GEM),was used as a good proxy for the chemical-physical processes that these two gas species can suffer once emitted in the air. In particular, H2S resulted to be more affected by secondary processes than GEM, possibly related to photochemical oxidation reactions.
    Description: Published
    Description: 48-58
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Real-time measurements ; gaseous elemental mercury ; Hydrogen sulphide ; Gaseous contaminants ; Solfatara crater ; Mt. Amiata ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-09
    Description: In this study, hydrogen sulfide (H2S) measurements in air carried out using (a) passive/diffusive samplers (Radiello® traps) and (b) a high-frequency (60 s) real-time analyzer (Thermo® 450i) were compared in order to evaluate advantages and limitations of the two techniques. Four different sites in urban environments (Florence, Italy) and two volcanic areas characterized by intense degassing of H2S-rich fluids (Campi Flegrei and Vulcano Island, Italy) were selected for such measurements. The concentrations of H2S generally varied over 5 orders of magnitude (from 10 1e103 mg/m3), the H2S values measured with the Radiello® traps (H2SR) being significantly higher than the average values measured by the Thermo® 450i during the trap exposure (H2STa), especially when H2S was 〈30 mg/m3. To test the reproducibility of the Radiello® traps, 8 passive/diffusive samplers were contemporaneously deployed within an 0.2 m2 area in an H2S-contaminated site at Mt. Amiata (Tuscany, Italy), revealing that the precision of the H2SR values was ±49%. This large uncertainty, whose cause was not recognizable, is to be added to that related to the environmental conditions (wind speed and direction, humidity, temperature), which are known to strongly affect passive measurements. The Thermo® 450i analyzer measurements highlighted the occurrence of short-term temporal variations of the H2S concentrations, with peak values (up to 5732 mg/m3) potentially harmful to the human health. The Radiello® traps were not able to detect such temporal variability due to their large exposure time. The disagreement between the H2SR and H2STa values poses severe concerns for the selection of an appropriate methodological approach aimed to provide an accurate measurement of this highly toxic air pollutant in compliance with the WHO air quality guidelines. Although passive samplers may offer the opportunity to carry out low-cost preliminary surveys, the use of the high-frequency H2S analyzer is preferred when an accurate assessment of air quality is required. In fact, the latter provides precise real-time measurements for a reliable estimation of the effective exposure to hazardous H2S concentrations, giving insights into the mechanisms regulating the dispersion of this air pollutant in relation to the meteorological parameters.
    Description: Published
    Description: 51-58
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: active analysers ; Passive/diffusive samplers ; Gaseous contaminants ; Air quality monitoring ; Hydrogen sulphide ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...