GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 47 (1982), S. 5427-5427 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Fresenius' Zeitschrift für analytische Chemie 302 (1980), S. 290-295 
    ISSN: 1618-2650
    Keywords: Best. von Chlor, Kalium, Calcium, Brom, Eisen, Kupfer, Zink in Serum ; Röntgenspektrometrie, PIXE
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Description / Table of Contents: Summary Proton induced X-ray emission (PIXE) Spectra have been obtained for the blood serum of several old-age subjects by using the Van de Graaff accelerator of Catania University. The concentration levels of Cl, K, Ca, Br, Fe, Cu, Zn have been determined simultaneously within 2 min by using 5 μl of blood serum. Good agreement with literature data has been found.
    Notes: Zusammenfassung Mit Hilfe des Van de Graaff-Beschleunigers der Univ. Catania wurden PIXE-Spektren vom Blutserum mehrerer alter Personen aufgenommen. Mit einer Probe von 5 μl konnten die obigen sieben Elemente innerhalb von 2 min bestimmt werden. Die Übereinstimmung mit Literaturangaben war gut.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-03-01
    Description: The eastern flank of the Mount Etna stratovolcano is affected by extension and is slowly sliding eastward into the Ionian Sea. The Pernicana fault system forms the border of the northern part of this sliding area. It consists of three E-W–oriented fault sectors that are seismically active and characterized by earthquakes up to 4.7 in magnitude (M) capable of producing ground rupture and damage located mainly along the western and central sectors, and by continuous creep on the eastern sector. A new topographic study of the central sector of the Pernicana fault system shows an overall bell-shaped profile, with maximum scarp height of 35 m in the center of the sector, and two local minima that are probably due to the complex morphological relation between fault scarp and lava flows. We determined the ages of lava flows cut by the Pernicana fault system at 12 sites using cosmogenic 3 He and 40 Ar/ 39 Ar techniques in order to determine the recent slip history of the fault. From the displacement-age relations, we estimate an average throw rate of ~2.5 mm/yr over the last 15 k.y. The slip rate appears to have accelerated during the last 3.5 k.y., with displacement rates of up to ~15 mm/yr, whereas between 3.5 and 15 ka, the throw rate averaged ~1 mm/yr. This increase in slip rate resulted in significant changes in seismicity rates, for instance, decreasing the mean recurrence time of M ≥ 4.7 earthquakes from ~200 to ~20 yr. Based on empirical relationships, we attribute the variation in seismic activity on the Pernicana fault system to factors intrinsic to the system that are likely related to changes in the volcanic system. These internal factors could be fault interdependencies (such as those across the Taupo Rift, New Zealand) or they could represent interactions among magmatic, tectonic, and gravitational processes (e.g., Kīlauea volcano, Hawaii). Given their effect on earthquake recurrence intervals, these interactions need to be fully assessed in seismic hazard evaluations.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-11-15
    Description: New data and interpretations of the geodynamics of eastern Sicily point to deep crustal shortening taking place in the area. Reconstructions of the lithospheric system, seismicity distribution, and stress state in the crust indicate that deformation is expressed by a large thrust-ramp cutting through the entire lower plate. The tectonic structure is propagating directly beneath the Mount Etna volcano, one of the few active volcanoes in Europe. Geostructural interpretation of tomographic sections allows for interpretations of the compressional structure as originating in response to trench-parallel breakoff of the Ionian slab. Following the simple assumption that if a slab retreats, it must either be compensated or alternatively pushed by the fore-arc mantle, we argue that the opening of a gateway in the slab has encouraged the fore-arc mantle to flow toward the Mount Etna region. Mantle mobilization has had a twofold influence on both magmatic source mixing and the inception of underplating processes beneath the Mount Etna. A shortening prevailing over extension in the crust below the volcano seems to have a significant impact on the dynamics of the Mount Etna volcanic system, which manifested through anomalous signals over the last thousands of years. Since a tectonic inversion of previous dilatational magma pathways is expected in such a converging setting, the documented variations are believed to be consistent with a volcano experiencing a declining phase. Comparison with other extinct volcanic systems in the southern Tyrrhenian margin, lying atop a detached slab and involved in contraction, provides insights into the evolution of Mount Etna.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-05-09
    Description: The 1971 eruption represents a benchmark in the recent history of Etna volcano. From avolcanological point of view, this eruption was characterised by complex intrusive dynamicsassociated with significant ground deformation that induced the activation of the Moscarelloseismogenic fault and the formation of a new summit crater: the Southeast Crater. At the sametime, the 1971 event marks an important change in the eruptive style and composition of the magmatowards products richer in K. It is no coincidence that, over the next fifty years, there would be anincrease in the frequency of summit and flank eruptions and associated output rate. From anhistorical viewpoint, the eruptive event of 1971 was the first important flank eruption studied bythe International Institute of Volcanology: the analysis of the scientific articles on this activityreveals a greater multidisciplinary content in the descriptions and explanations of volcanic activity.Particularly important were the collaborations of British and French research groups that, togetherwith their Italian colleagues, succeeded in giving a complete picture of the eruption and describingthe state of knowledge on the Sicilian volcano. The multidisciplinary methodology used to study thiseruption is still valid today.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-20
    Description: In this paperwe trace the impact of the 1669 eruption and the 1693 earthquakes in eastern Sicily, their effects on the people living in the Etna region and, more particularly, in the city of Catania and its hinterland. The former event was the largest historic eruption of Etna, having a flow field with an area of ca. 40 km2 and a maximum flow length of ca. 17 km, whereas the latter – occurring only 24 years later – killed between 11,000 and 20,000 of Catania’s estimated 20–27,000 inhabitants, plus many more in smaller settlements. Using a combination of field-based research, contemporary accounts and archival sources, the authors are able to drawa number of conclusions. First, the 1669 eruption, although it did not kill or injure, was economically the most devastating of historical eruptions. Although it affected a limited area, inundation by lava meant that landwas effectively sterilized for centuries and, in a pre-industrial agriculturally-based economy, recovery could not occur quicklywithout outside assistance from the State. Indeed some of the worst affected municipalities (i.e. Comuni) were only able to support populations that were much reduced in size. Secondly, much of the damage caused to buildings by volcanic earthquakes was effectively masked, becausemost of the settlements affectedwere quickly covered by lava flows. The vulnerability to volcanic earthquakes of traditionally constructed buildings has, however, remained a serious example of un-ameliorated risk exposure through to the present day. A third conclusion is that the 1693 earthquakes, although more serious with respect to the number of people and the area they affected in terms of mortality, morbidity and their immediate economic impact, saw a rapid and sustained recovery. Thiswas due in part to the fact that, in contrast to lava flows, an earthquake does not sterilize land, but more significant was the reduction in population numberswhich served both to release and concentrate funds for investment in recovery. By the close of the eighteenth century Cataniawas knownthroughout Europe for the quality of its townscape and buildings, many of which were constructed in the then fashionable (and expensive) baroque style. Finally, the 1669 and 1693 disasters were seized on by the authorities as opportunities to plan new and re-build old settlementswith improved infrastructure to facilitate economic growth. By the nineteenth centurymany of the lessons had been largely forgotten and there were many examples of: poor seismic design of individual buildings; and the location of newresidential and commercial areas that placed more people at greater risk fromfuture extreme events. Indeed it is only recently have new regulations been enacted to prevent the construction of buildings in the vicinity of active faults and to control development in other hazardous zones.
    Description: Published
    Description: 25-40
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Etna, 1669 eruption, 1693 earthquake, Resilience ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-12-15
    Description: A detailed survey of morphological and biological markers of paleo-shorelines has been carried out alongthe coastal sector of Mt. Etna volcano (eastern Sicily, Italy), in order to better define causes and timing ofvertical deformation. We have mapped markers of raised Holocene shorelines, which are represented bybeach rocks, wave-cut platforms, balanid, vermetid and algal rims. The timing of coastal uplift has beendetermined by radiocarbon dating of shells collected from the raised paleo-shorelines and, to correctlyassess the total amount of tectonic uplift of the coast during the Late Holocene, we have compared theelevation-age data of sampled shells to the local curve of Holocene sea-level rise. Taking into accountthe nominal elevation of the associated paleo-shorelines, an uplift rate of 2.5–3.0 mm/year has beenestimated for the last 6–7 ka. This general process of uplifting is only locally interrupted by subsidencerelated to flank sliding of the volcanic edifice, measured at docks and other manmade structures, and byacceleration along the hinge of an active anticline and at the footwall of an active fault. Based on this newdata we suggest more precise time–space constraints for the dynamics of the lower eastern flank of Mt.Etna volcano.
    Description: Published
    Description: 194-203
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna, Holocene, Paleo-shoreline, Coastal uplift, Flank instability ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-01
    Description: An updated tectonic framework of Etna's unstable flank has been defined as a result of multidisciplinary analyses carried out by integrating geological and geophysical data. The different typologies of datasets have been analyzed and correlated in order to constrain the geometry and kinematics of the fault systems controlling the unstable flank of Etna volcano and to better understand their complex relationship with the offshore morphostructures of the continental margin. In particular, we have considered as the main structural elements the following four fault systems: Pernicana, Ragalna, Tremestieri–Trecastagni and Timpe. Slip-rates and kinematics have been estimated in both long- and short-terms, respectively, from geological and seismotectonic/geodetic data. Data integration has allowed defining five kinematic domains in the sliding flank of Etna: (1) the NE block, bordered by the Pernicana fault and characterised by the highest deformation velocities; ground velocity progressively diminishes toward South, with a clockwise rotation of the vectors defining (2) the block embracing the central part of the Timpe system; (3) the Giarre wedge; (4) the Medium-East block, bounded by the S. Tecla and Trecastagni faults; and (5) the SE block bordered, by the hidden Belpasso-Ognina tectonic lineament. The dynamics of these blocks takes place through discontinuous movements: sudden short-term accelerations related to the magma intrusion are superimposed to a fairly constant mid-term ESE sliding. The proposed comprehensive model of the unstable flank provides the basic input parameters for applying analytical models to flank dynamics of Etna volcano.
    Description: Published
    Description: 5-15
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Faults, Seismotectonics, Ground deformation, Geodynamic model, Flank instability, Mt Etna ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-22
    Description: Mt. Etna is renowned for being the most active and highest volcano in Europe. Lava flows and weak explosive eruptions characterize its activity, but intermediate to large explosive eruptions have punctuated its eruptive history. Marine and lacustrine distal records are excellent archives for the recognition of past large explosive activity at Mt. Etna, as testified by the recognition of distal tephra layers of Pleistocene to Holocene age. These data are, to date, neither organised nor correlated to the proximal stratigraphic and chronological records. Here, we propose the reorganisation and correlation of the distal tephra layers from Mt. Etna in order to decipher the timings and frequency of its major explosive eruptions.
    Description: Published
    Description: Lisbona
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: restricted
    Keywords: Mount Etna ; Tephrostratigraphy ; Explosive eruptions ; Mediterranean area
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-11-20
    Description: A new volcano-tectonic map of Etna volcano has been compiled through a morphotectonic analysis performed with detailed field mapping, high-resolution DEM and orthoimages, constrained by seismotectonic data. In this study, we present a homogeneous mapping of the volcano-tectonic and tectonic elements on the whole volcano, consistent with the updated knowledge on the geology and active tectonics observed in historical times. Details of the tectonic features occurring in the lower-middle part of the volcanic edifice, namely the more densely urbanized areas, are described; volcanic elements such as eruptive fissures, caldera and flank collapse rims affecting the upper sectors, are also reported. All the volcanic landforms of Etna edifice have been generated by constructive and destructive volcanic processes largely during the last 15 ka activity of Mongibello volcano. DEM-derived images (e.g. slope and aspect maps) were produced and interpreted in order to identify faultrelated surface features based on an explicit list of well-known elements of tectonic geomorphology. Subsequently, the morphotectonic mapping has been compared with field data on geologic marker offsets, as well as evidence of surface faulting, including coseismic displacements and creeping of historical and recent events. This combined approach has enabled classifying each element reported in the map as (i) exposed faults, (ii) buried faults and (iii) hidden faults. The analysis of slip-rates confirms the exceptional dynamics of the Pernicana fault, which is characterised by an almost constant slip-rate of 20-36 mm/a over the last 1000 years, while the Timpe fault zone and the structural system in the southern flank accommodate a relevant amount of deformation with slip-rates reported to range of ca. 2-4 mm/a. Finally, a seismotectonic model summarises the information regarding seismic hazard, with reference to the additional, potentially severe effects induced by surface faulting.
    Description: Published
    Description: 153-170
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Etna, DEM, digital photogrammetry, morphotectonics, ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...