GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bouman, Heather A; Platt, Trevor; Doblin, Martina A; Figueiras, Francisco G; Gudmundsson, Kristinn; Gudfinnsson, Hafsteinn G; Huang, Bangqin; Hickman, Anna; Hiscock, Michael R; Jackson, Thomas; Lutz, Vivian A; Melin, Frederic; Rey, Francisco; Pepin, Pierre; Segura, Valeria; Tilstone, Gavin; van Dongen-Vogels, Virginie; Sathyendranath, Shubha (2018): Photosynthesis-irradiance parameters of marine phytoplankton: synthesis of a global data set. Earth System Science Data, 10, 251-266, https://doi.org/10.5194/essd-10-251-2018
    Publication Date: 2024-03-23
    Description: The MAPPS global database of photosynthesis-irradiance (P-E) parameters consists of over 5000 P-E experiments that provides information on the spatio-temporal variability in the two P-E parameters (the assimilation number, and the initial slope) that are fundamental inputs for models of marine primary production that use chlorophyll as the state variable. The experiments were carried out by an international group of research scientists to examine the basin-scale variability in the photophysiological response of marine phytoplankton over a range of oceanic regimes (from the oligotrophic gyres to productive shelf systems) and covers several decades. These data can be used to improve the assignment of P-E parameters in the estimation of marine primary production using satellite data.
    Keywords: Biogeographical province; Chief scientist(s); Chlorophyll a; Comment; DATE/TIME; DEPTH, water; Identification; LATITUDE; Light saturation; LONGITUDE; Maximum light utilization coefficient in carbon per chlorophyll a; Name; Production rate, maximal, light saturated, as carbon per chlorophyll a; Project; Sample ID; Station label
    Type: Dataset
    Format: text/tab-separated-values, 61295 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-23
    Description: Prochlorococcus and Synechococcus are the dominant primary producers in marine ecosystems and perform a significant fraction of ocean carbon fixation. These cyanobacteria interact with a diverse microbial community that coexists with them. Comparative genomics of cultivated isolates has helped address questions regarding patterns of evolution and diversity among microbes, but the fraction that can be cultivated is miniscule compared to the diversity in the wild. To further probe the diversity of these groups and extend the utility of reference sequence databases, we report a data set of single cell genomes for 489 Prochlorococcus, 50 Synechococcus, 9 extracellular virus particles, and 190 additional microorganisms from a diverse range of bacterial, archaeal, and viral groups. Many of these uncultivated single cell genomes are derived from samples obtained on GEOTRACES cruises and at well-studied oceanographic stations, each with extensive suites of physical, chemical, and biological measurements. The genomic data reported here greatly increases the number of available Prochlorococcus genomes and will facilitate studies on evolutionary biology, microbial ecology, and biological oceanography.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-23
    Description: Recent advances in understanding the ecology of marine systems have been greatly facilitated by the growing availability of metagenomic data, which provide information on the identity, diversity and functional potential of the microbial community in a particular place and time. Here we present a dataset comprising over 5 terabases of metagenomic data from 610 samples spanning diverse regions of the Atlantic and Pacific Oceans. One set of metagenomes, collected on GEOTRACES cruises, captures large geographic transects at multiple depths per station. The second set represents two years of time-series data, collected at roughly monthly intervals from 3 depths at two long-term ocean sampling sites, Station ALOHA and BATS. These metagenomes contain genomic information from a diverse range of bacteria, archaea, eukaryotes and viruses. The data's utility is strengthened by the availability of extensive physical, chemical, and biological measurements associated with each sample. We expect that these metagenomes will facilitate a wide range of comparative studies that seek to illuminate new aspects of marine microbial ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: We report the distributions and stoichiometry ofdissolved zinc (dZn) and cobalt (dCo) in sub-tropical andsub-Antarctic waters of the south-eastern Atlantic Oceanduring austral spring 2010 and summer 2011/2012. In sub-tropical surface waters, mixed-layer dZn and dCo con-centrations during early spring were 1.60±2.58 nM and30±11 pM, respectively, compared with summer values of0.14±0.08 nM and 24±6 pM. The elevated spring dZn con-centrations resulted from an apparent offshore transport ofelevated dZn at depths between 20–55 m, derived from theAgulhas Bank. In contrast, open-ocean sub-Antarctic surfacewaters displayed largely consistent inter-seasonal mixed-layer dZn and dCo concentrations of 0.10±0.07 nM and11±5 pM, respectively. Trace metal stoichiometry, calcu-lated from concentration inventories, suggests a greater over-all removal for dZn relative to dCo in the upper water columnof the south-eastern Atlantic, with inter-seasonally decreas-ing dZn/dCo inventory ratios of 19–5 and 13–7 mol mol−1for sub-tropical surface water and sub-Antarctic surface wa-ter, respectively. In this paper, we investigate how the sea-sonal influences of external input and phytoplankton succes-sion may relate to the distribution of dZn and dCo and varia-tion in dZn/dCo stoichiometry across these two distinct eco-logical regimes in the south-eastern Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-12
    Description: Cell abundances of Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes were estimated in surface waters using principal component analysis (PCA) of hyperspectral and multispectral remote-sensing reflectance data. This involved the development of models that employed multilinear correlations between cell abundances across the Atlantic Ocean and a combination of PCA scores and sea surface temperatures. The models retrieve high Prochlorococcus abundances in the Equatorial Convergence Zone and show their numerical dominance in oceanic gyres, with decreases in Prochlorococcus abundances towards temperate waters where Synechococcus flourishes, and an emergence of picoeukaryotes in temperate waters. Fine-scale in-situ sampling across ocean fronts provided a large dynamic range of measurements for the training dataset, which resulted in the successful detection of fine-scale Synechococcus patches. Satellite implementation of the models showed good performance (R2 〉 0.50) when validated against in-situ data from six Atlantic Meridional Transect cruises. The improved relative performance of the hyperspectral models highlights the importance of future high spectral resolution satellite instruments, such as the NASA PACE mission’s Ocean Color Instrument, to extend our spatiotemporal knowledge about ecologically relevant phytoplankton assemblages.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...