GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-09
    Description: The assessment of satellite image classifications is usually carried out using a test sample assumed as the ground truth, from which a confusion matrix is derived. There are cases where the reference data, even those coming from a ground survey, are affected by errors and do not represent a reliable truth. In the field of geophysical parameter retrieval, the triple collocation (TC) technique is applied for validating remotely sensed products when the source of test data (e.g., ground data) does not represent a reliable reference. TC is able to retrieve the error variances of three systems observing the same target parameter, assuming that their errors are independent. In this paper, we exploit the same idea to test the classification accuracy in cases where the ground truth is not available. We extend the TC approach to the classification problem for a general number of classes, but we solve it numerically for a two-class problem (i.e., collapsed and noncollapsed buildings). The specific case refers to the detection of L'Aquila 2009 earthquake damage from very high-resolution optical data. The image classification, performed by exploiting an object-based analysis, is compared with those from two different ground surveys carried out after the earthquake by different teams and with different purposes. This paper demonstrates the power of the TC approach for assessing the classification accuracy with no reliable ground truth available, and provides an insight into the problem of assessing damage, from satellite and on ground, in a very critical and unsafe situation, like the one occurring after an earthquake. Moreover, it was found that the remotely sensed product can have an order of accuracy comparable to that of at least one of the ground surveys.
    Description: Published
    Description: 485-496
    Description: 1VV. Altro
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-12
    Description: The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is an Italian research institution with focus on earth sciences. Moreover, the INGV is the operational center for seismic surveillance and earthquake monitoring in Italy and is a part of the civil protection system as a center of expertise on seismic, volcanic, and tsunami risks.INGV operates the Italian National Seismic Network and other networks at national scale and is a primary node of the European Integrated Data Archive for archiving and distributing strong‐motion and weak‐motion seismic recordings. In the control room in Rome, INGV staff performs seismic surveillance and tsunami warning services; in Catania and Naples, the control rooms are devoted to volcanic surveillance. Volcano monitoring includes locating earthquakes in the regions around the Sicilian (Etna, Eolian Islands, and Pantelleria) and the Campanian (Vesuvius, Campi Fregrei, and Ischia) active volcanoes. The tsunami warning is based on earthquake location and magnitude (M) evaluation for moderate to large events in the Mediterranean region and also around the world. The technologists of the institute tuned the data acquisition system to accomplish, in near real time, automatic earthquake detection, hypocenter and magnitude determination, and evaluation of several seismological products (e.g., moment tensors and ShakeMaps). Database archiving of all parametric results is closely linked to the existing procedures of the INGV seismic surveillance environment and surveillance procedures. Earthquake information is routinely revised by the analysts of the Italian seismic bulletin. INGV provides earthquake information to the Department of Civil Protection (Dipartimento di Protezione Civile) to the scientific community and to the public through the web and social media. We aim at illustrating different aspects of earthquake monitoring at INGV: (1) network operations; (2) organizational structure and the hardware and software used; and (3) communication, including recent developments and planned improvements.
    Description: FISR SOIR DPC
    Description: Published
    Description: 1659–1671
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: JCR Journal
    Keywords: Seismic surveillance ; earthquake location and magnitude
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-13
    Description: In this work, we propose an improved algorithm to constrain the 3D ground displacement field induced by fast surface deformations due to earthquakes or landslides. Based on the integration of different data, we estimate the three displacement components by solving a function minimization problem from the Bayes theory. We exploit the outcomes from SAR Interferometry (InSAR), Global Positioning System (GNSS) and Multiple Aperture Interferometry (MAI) to retrieve the 3D surface displacement field. Any other source of information can be added to the processing chain in a simple way, being the algorithm computationally efficient. Furthermore, we use the intensity Pixel Offset Tracking (POT) to locate the discontinuity produced on the surface by a sudden deformation phenomenon and then improve the GNSS data interpolation. This approach allows to be independent from other information such as in-situ investigations, tectonic studies or knowledge of the data covariance matrix. We applied such a method to investigate the ground deformation field related to the 2014 Mw 6.0 Napa Valley earthquake, occurred few kilometers from the San Andreas fault system.
    Description: Published
    Description: 206-215
    Description: 1T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-07
    Description: Synthetic aperture radar (SAR) tomography (TomoSAR) is able to separate multiple scatterers layovered inside the same resolution cell in high-resolution SAR images of urban scenarios, usually with a large number of orbits, making it an expensive and unfeasible task for many practical applications. Targeting at finding out the minimum number of images necessary for tomographic reconstruction, this paper innovatively applies minimum redundancy array (MRA) for tomographic baseline array optimization. Monte Carlo simulations are conducted by means of Two-step Iterative Shrinkage/Thresholding (TWIST) and Truncated Singular Value Decomposition (TSVD) to fully evaluate the tomographic performance of MRA orbits in terms of detection rates, Cramer Rao Lower Bounds, as well as resistance against sidelobes. Experiments on COSMO-SkyMed and TerraSAR-X/TanDEM-X data are also conducted in this paper. The results from simulations and experiments on real data have both demonstrated that introducing MRA for baseline optimization in SAR tomography can benefit from the dramatic reduction of necessary orbit numbers, if the recently proposed TWIST method is used for tomographic reconstruction. Although the simulation and experiments in this manuscript are carried out using spaceborne data, the outcome of this paper can also give examples for airborne TomoSAR when designing flight orbits using airborne sensors.
    Description: Published
    Description: 3100
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: JCR Journal
    Keywords: SAR tomography ; Urban ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-23
    Description: The preparation, initiation, and occurrence dynamics of earthquakes in Italy are governed by several frequently unknown physical mechanisms and parameters. Understanding these mechanisms is crucial for developing new techniques and approaches for earthquake monitoring and hazard assessments. Here, we develop a first-order numerical model simulating quasi-static crustal interseismic loading, coseismic brittle episodic dislocations, and postseismic relaxation for extensional and compressional earthquakes in Italy based on a common framework of lithostatic and tectonic forces. Our model includes an upper crust, where the fault is locked, and a deep crust, where the fault experiences steady shear.
    Description: Published
    Description: 627–645
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-09
    Description: Earth Observation (EO) data are used to map mostly affected urban areas after an earthquake generally exploiting change detection techniques applied at pixel scale. However, Civil Protection Services require damage assessment of each building according to a well-established scale to manage rescue operations and to estimate the economic losses. Considering the earthquake that hit L'Aquila city (Italy) on April 6, 2009, this work assess the feasibility of producing damage maps at the scale of single building from Very High Resolution (VHR) optical images collected before and after the seismic event. We considered the European Macroseismic Scale 1998 (EMS-98) and assessed the possibility to discriminate between collapsed or heavy damaged buildings (damage grade DG equal to 5 in the EMS-98 scale) and less damaged or undamaged buildings (DG 〈 5 in the EMS-98). The proposed approach relies on a pre-existing urban map to identify image objects corresponding to building footprints. The image analysis is carried out according to many different parameters with the objective of assessing their effectiveness in singling out changes associated to the building collapse. Features describing texture and colour changes, as well statistical similarity and correlation descriptors, such as the Kullbach Leibler Distance and the Mutual Information, were included in our analysis. Two supervised classification approaches, respectively, based on the use of the Bayesian Maximum A Posteriori (MAP) criterion and on Support Vector Machines (SVM), were compared. In our experiment, we considered the whole L'Aquila historical centre comparing classification results with the ground survey performed by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The work represents one of the first attempt to detect damage at the scale of single building, validated against an extensive ground survey. It addresses methodological aspects, highlighting the potential of textural features computed at object scale and SVMs, and discuss potential and limitations of EO in this field compared to ground surveys.
    Description: Published
    Description: 166-178
    Description: 1VV. Altro
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-18
    Description: Since the last century sea level is rising at unprecedented rates with respect to the last millennia. In the average, the Oceans are rising at 3.2 mm/yr, while the Mediterranean at 1.8 mm/yr. In the latter region, vertical tectonic movements play a key role to locally increasing the rates of sea level rise, especially along subsiding coasts, threating coastal infrastructures, heritage sites and cities. The Global Geodetic Observation System (GGOS) is supporting the observation of the natural and anthropogenic coastal changes and, in sinergy with the Intergovernmental Panel on Climate Change (IPCC) Reports (2014) on climate change predictions, marine flooding scenarios for the next decades can be provided. With this goal, we have investigated the densely populated coast near Rome, between Fiumicino and Ostia villages, which is characterized by low elevated coasts, the mouth of Tiber river and important infrastructures, like harbors and the international airport of Fiumicino. We used and jointly analyzed the available time series of InSAR, GPS and tide gauge data to estimate the rates of land subsidence and sea level trend, to provide the relative sea level rise for this coast up to 2100. Here we show results for two estimated scenarios: i) regional trend projected by the IPCC RCP-4.5 and RCP 8.5 (2014) and ii) the Veermer and Rahmstorf (2009) dual model. For the most severe scenario, our analysis indicate that a broad area will be flooded by 2100.
    Description: Published
    Description: Ustica, Italy
    Description: 7A. Geofisica per il monitoraggio ambientale e geologia medica
    Keywords: Relative sea level ; InSAR ; Flooding scenario
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-07
    Description: Due to the intrinsic side-looking geometry of synthetic aperture radar (SAR), time series interferometric SAR is only able to monitor displacements in line-of-sight (LOS) direction, which limits the accuracy of displacement measurement in landslide monitoring. This is because the LOS displacement is only a three dimensional projection of real displacement of a certain ground object. Targeting at this problem, a precise digital elevation model (DEM) assisted slope displacement retrieval method is proposed and applied to a case study over the high and steep slope of the Dagushan open pit mine. In the case study, the precise DEM generated by laser scanning is first used to minimize topographic residuals in small baseline subsets analysis. Then, the LOS displacements are converted to slope direction with assistance of the precise DEM. By comparing with ground measurements, relative root mean square errors (RMSE) of the estimated slope displacements reach approximately 12-13% for the ascending orbit, and 5.4-9.2% for the descending orbit in our study area. In order to validate the experimental results, comparison with microseism monitoring results is also conducted. Moreover, both results have found that the largest slope displacements occur on the slope part, with elevations varying from -138 m to -210 m, which corresponds to the landslide area. Moreover, there is a certain correlation with precipitation, as revealed by the displacement time series. The outcome of this article shows that rock mass structure, lithology, and precipitation are main factors affecting the stability of high and steep mining slopes.
    Description: Published
    Description: 6674
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: JCR Journal
    Keywords: digital elevation model; high and steep slope; landslide monitoring; open-pit mine; small baseline subsets analysis ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-02-26
    Description: In this work we exploit X- and C-band InSAR data for detecting local deformation phenomena induced by the 2016–2017 Central Italy seismic sequence. Our goal is to highlight the usefulness of multi-band InSAR analysis for Hazard assessing and Rapid Mapping purposes when in-situ investigations are difficult or dangerous to be performed. Indeed, local seismic-induced effects (such as landslides, avalanches, subsidence, etc.) could severely impact the environment and the population in the surrounding of areas hit by earthquakes. We focused on four areas, named Monte Vettore, Podalla, Bolognola and Cicconi, where InSAR outcomes revealed how the main seismic events of the sequence activated several landslides and secondary faults interested by deformation of ~2–3 cm along the satellite Line-of-Sight (LoS). The use of multi-band InSAR data allows the observation of multi-scale deformation phenomena with both different spatial resolution and coverage, highlighting the limits and constraints of different SAR sensors. Moreover, it ensures the crosschecking of displacement patterns retrieved through different InSAR products, especially when no ground truth or in situ ancillary data are available for validation purposes. As a result, the retrieved InSAR information can support the Scientific Community and the Institutions in the management of crisis emergencies.
    Description: Published
    Description: 234-242
    Description: 1T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-05-12
    Description: InSAR images allow to detect the coseismic deformation, delimiting the epicentral area where the larger displacement has been concentrated. By inspecting the InSAR fringe patterns it is commonly recognized that, for dip-slip faults, the most deformed area is elliptical, or quadrilobated for strike-slip faults. This area coincides with the surface projection of the volume coseismically mobilized in the hanging wall of thrusts and normal faults, or the crustal walls adjacent to strike-slip faults. In the present work we analyzed a dataset of 32 seismic events, aiming to compare the deformation fields in terms of shape, spatial extents, and amount of deformed rock volumes, and the corresponding earthquake type and magnitudes. The dimension of the deformed area detected by InSAR scales with the magnitude of the earthquake, and we found that for M ≥ 6 is always larger than 100 km2, increasing to more than 550 km2 for M ≈ 6.5. Moreover, the comparison between InSAR and Peak Ground Accelerations documents the larger shaking within the areas suffering higher vertical deformation. As well established, the seismic epicenter rarely coincides with the area of larger shaking. Instead, the higher macro- seismic intensity often corresponds to the area of larger vertical displacement (either downward or upward), apart local site amplification effects. Outside this area, the vertical displacement is drastically lower, determining the strong attenuation of seismic waves and the decrease of the peak ground acceleration in the surrounding far- field area. Indeed, the segment of the activated fault constrains the area where the vertical oscillations are larger, allowing the contemporaneous maximum freedom degree of the crustal volume affected by horizontal maximum shaking, i.e., the near-field or epicentral area; therefore, the epicentral area and volume are active, i.e., they coseismically move and are contemporaneously crossed by seismic waves (active volume and surface active domain) where trapped waves and constructive interference are expected, whereas the surrounding far-field area is mainly fixed and passively crossed by seismic waves (passive volume and surface passive domain). All these considerations point out that InSAR images of areas affected by earthquakes are a powerful tool representing the fingerprint of the epicentral area where the largest shaking has taken place during an earthquake. Seismic hazard assessments should primarily rely on the expected future active domains.
    Description: Published
    Description: 103667
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: InSAR coseismic vertical deformation ; Constructive waves inferference ; Seismic hazard assessment ; Earthquake epicentral area ; Near-field active domain ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...