GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: String models. ; Electronic books.
    Description / Table of Contents: This book guides the reader through string theory, one of the most exciting and challenging areas of modern theoretical physics. It is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook. It contains exercises with solutions, and homework problems with solutions.
    Type of Medium: Online Resource
    Pages: 1 online resource (757 pages)
    Edition: 1st ed.
    ISBN: 9780511255960
    DDC: 530.14
    Language: English
    Note: Cover -- Half-title -- Title -- Copyright -- Dedication -- Contents -- Preface -- NOTATION AND CONVENTIONS -- 1 Introduction -- 1.1 Historical origins -- 1.2 General features -- Gravity -- Yang-Mills gauge theory -- Supersymmetry -- Extra dimensions of space -- The size of strings -- 1.3 Basic string theory -- World-volume actions and the critical dimension -- Closed strings and open strings -- Perturbation theory -- Superstrings -- 1.4 Modern developments in superstring theory -- T-duality -- S-duality -- D-branes -- What is M-theory? -- F-theory -- Flux compactifications -- Black-hole entropy -- AdS/CFT duality -- String and M-theory cosmology -- 2 The bosonic string -- 2.1 p-brane actions -- Relativistic point particle -- Generalization to the p-brane action -- 2.2 The string action -- The Nambu-Goto action -- The string sigma model action -- 2.3 String sigma-model action: the classical theory -- Symmetries -- Gauge fixing -- Equations of motion and boundary conditions -- Equations of motion -- Boundary conditions -- Solution to the equations of motion -- Closed-string mode expansion -- 2.4 Canonical quantization -- Open-string mode expansion -- Hamiltonian and energy{momentum tensor -- Noether currents -- Hamiltonian -- Energy momentum tensor -- Mass formula for the string -- The Virasoro algebra -- Classical theory -- Quantum theory -- Physical states -- Mass operator -- Level matching -- Virasoro generators and physical states -- Absence of negative-norm states -- Spurious states -- Determination of a -- Determination of the space-time dimension -- Critical bosonic theory -- 2.5 Light-cone gauge quantization -- Mass-shell condition -- Analysis of the spectrum -- The open string -- The number of states -- The closed string -- 3 Conformal field theory and string interactions -- 3.1 Conformal field theory -- The conformal group in D dimensions. , The conformal group in two dimensions -- Conformal fields and operator product expansions -- Kac-Moody algebras -- Coset-space theories -- Minimal models -- 3.2 BRST quantization -- 3.3 Background fields -- The role of the dilaton -- Effective potential and moduli fields -- 3.4 Vertex operators -- 3.5 The structure of string perturbation theory -- Partition functions and scattering amplitudes -- The moduli space of Riemann surfaces -- 3.6 The linear-dilaton vacuum and noncritical strings -- 3.7 Witten's open-string field theory -- 4 Strings with world-sheet supersymmetry -- 4.1 Ramond-Neveu-Schwarz strings -- 4.2 Global world-sheet supersymmetry -- Superspace -- 4.3 Constraint equations and conformal invariance -- 4.4 Boundary conditions and mode expansions -- Open strings -- Closed strings -- 4.5 Canonical quantization of the RNS string -- Super-Virasoro generators and physical states -- Absence of negative-norm states -- 4.6 Light-cone gauge quantization of the RNS string -- Analysis of the spectrum -- The Neveu-Schwarz sector -- The Ramond sector -- Zero-point energies -- The GSO projection -- The massless closed-string spectrum -- 4.7 SCFT and BRST -- Superconformal field theory -- BRST symmetry -- 5 Strings with space-time supersymmetry -- 5.1 The D0-brane action -- Kappa symmetry -- 5.2 The supersymmetric string action -- Kappa symmetry -- 5.3 Quantization of the GS action -- The light-cone gauge -- The light-cone gauge action -- Canonical quantization -- Open type I superstring -- Closed strings -- The free string spectrum -- Open type I superstrings -- Type II superstring theories -- 5.4 Gauge anomalies and their cancellation -- Chiral fields -- Differential forms and characteristic classes -- Characterization of anomalies -- Type IIB superstring theory -- Type I superstring theory -- The supergravity multiplet -- The case of E8 x E8. , 6 T-duality and D-branes -- 6.1 The bosonic string and Dp-branes -- T-duality and closed strings -- T-duality and the sigma model -- T-duality and open strings -- Boundary conditions -- D-branes -- Open-string tachyons -- Chan-Paton charges, Wilson lines and multiple branes -- The spectrum -- 6.2 D-branes in type II superstring theories -- Form fields and p-brane charges -- Maxwell theory -- Generalization to p-branes -- Stable D-branes in type II superstring theories -- Non-BPS D-branes -- Type II superstrings and T-duality -- Mapping of coupling constants -- K-theory -- Type II D-branes -- 6.3 Type I superstring theory -- Orientifold projection -- Anomalies -- Other type I D-branes -- The type I theory -- 6.4 T-duality in the presence of background fields -- NS-NS sector fields -- R-R sector fields -- 6.5 World-volume actions for D-branes -- Kappa symmetric D-brane actions -- Counting of degrees of freedom -- Born-Infeld action -- D-brane tensions -- Bosonic D-brane actions with background fields -- The abelian case -- The nonabelian case -- The Myers effect -- 7 The heterotic string -- 7.1 Nonabelian gauge symmetry in string theory -- D-branes and orientifold planes -- Isometries of the internal space -- Heterotic strings -- 7.2 Fermionic construction of the heterotic string -- The SO(32) heterotic string -- Right-movers -- Left-movers -- Massless spectrum -- A GSO-type projection -- The E8 x E8 heterotic string -- Boundary conditions for fermions -- The n = 16 case -- 7.3 Toroidal compactification -- The bosonic string -- Mode expansions -- Mode expansions with constant background fields -- The mass spectrum and level-matching condition -- The moduli space -- Enhanced gauge symmetry -- The self-dual radius -- One-loop modular invariance -- Modular invariance of… -- Even self-dual lattices -- A brief introduction to lattices. , Lattices and toroidal compactifications -- Type II superstrings -- 7.4 Bosonic construction of the heterotic string -- Toroidal compactification of the heterotic string -- Duality and the heterotic string -- Appendix: The Poisson resummation formula -- 8 M-theory and string duality -- Low-energy e ective actions -- BPS branes -- 8.1 Low-energy effective actions -- Renormalizability -- Eleven-dimensional supergravity -- Field content -- Action -- Supersymmetry transformations -- Supersymmetric solutions -- M-branes -- Type IIA supergravity -- Fermionic fields -- Bosonic fields -- Coupling constants -- Action -- Supersymmetry transformations -- Type IIB supergravity -- Field content -- The self-dual five-form -- An action -- Supersymmetry transformations -- Global SL(2R) symmetry -- Type I supergravity -- Field content -- Action -- Supersymmetry transformations -- Heterotic supergravity -- Action -- Supersymmetry transformations -- 8.2 S-duality -- A double expansion -- Type I superstring - SO(32) heterotic string duality -- Nonperturbative test -- The fundamental type I string -- Type IIB S-duality -- Symmetry under… -- (p,q) strings -- Other BPS states -- 8.3 M-theory -- Type IIA superstring theory at strong coupling -- The D6-brane -- M-branes -- The D6-brane -- E8 x E8 heterotic string theory at strong coupling -- 8.4 M-theory dualities -- An M-theory/type IIB superstring duality -- Matching BPS brane tensions in nine dimensions -- An M-theory/SO(32) superstring duality -- U-duality -- A nongeometric duality of M-theory -- 9 String geometry -- Kaluza{Klein compactification -- Brane-world scenario -- Motivation -- A first glance at Calabi-Yau manifolds -- Conifold transitions and supersymmetric cycles -- Mirror symmetry -- Exceptional-holonomy manifolds -- 9.1 Orbifolds -- Some simple examples -- Compact examples -- Noncompact examples. , The spectrum of states -- Orbifolds and supersymmetry breaking -- The orbifold… -- 9.2 Calabi-Yau manifolds: mathematical properties -- Definition of Calabi-Yau manifolds -- Hodge numbers of a Calabi-Yau n-fold -- Hodge diamond -- 9.3 Examples of Calabi-Yau manifolds -- Calabi-Yau one-folds -- Noncompact example:… -- Compact example: T2 -- Calabi{Yau two-folds -- Noncompact examples -- Compact examples: T4, K3 -- Orbifold limit of K3 -- Blowing up the singularities -- Hodge numbers of K3 -- Calabi-Yau n-folds -- Submanifolds of complex projective spaces -- 9.4 Calabi-Yau compactifications of the heterotic string -- Ansatz for the D = 10 space-time geometry -- Maximally symmetric solutions -- Conditions for unbroken supersymmetry -- Properties of the external space -- Properties of the internal manifold -- Holonomy and unbroken supersymmetry -- Internal Dirac matrices -- Kahler form and complex structure -- Holomorphic three-form -- 9.5 Deformations of Calabi-Yau manifolds -- Antisymmetric tensor-field deformations -- Metric deformations -- A simple example: the torus -- Deformations of Calabi-Yau three-folds -- 9.6 Special geometry -- The metric on moduli space -- The complex-structure moduli space -- The Kahler potential -- Special coordinates -- The Kahler transformations -- The Kahler-structure moduli space -- The Kahler potential -- The form of the prepotential -- 9.7 Type IIA and type IIB on Calabi-Yau three-folds -- Type IIA -- Type IIB -- 9.8 Nonperturbative effects in Calabi-Yau compactifications -- The conifold singularity -- Supersymmetric cycles -- Special Lagrangian submanifolds -- Black-hole mass formula -- Holomorphic cycles -- 9.9 Mirror symmetry -- The circle -- The torus -- T3 fibrations -- 9.10 Heterotic string theory on Calabi-Yau three-folds -- 9.11 K3 compactifications and more string dualities. , Compactification of M-theory on K3.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    [Bonn] : [Universitätsklinikum Bonn, Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie (IMMIP)]
    Keywords: Forschungsbericht ; Fadenwürmer ; Geschwür
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (12 Seiten, 196,54 KB)
    Language: English
    Note: Förderkennzeichen BMBF TI 07.003 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Llovel, William; Becker, Melanie; Cazenave, Anny; Crétaux, Jean-François; Ramillien, Guillaume (2010): Global land water storage change from GRACE over 2002-2009; Inference on sea level. Comptes Rendus Geoscience, 342(2), 179-188, https://doi.org/10.1016/j.crte.2009.12.004
    Publication Date: 2023-12-13
    Description: Global change in land water storage and its effect on sea level is estimated over a 7-year time span (August 2002 to July 2009) using space gravimetry data from GRACE. The 33 World largest river basins are considered. We focus on the year-to-year variability and construct a total land water storage time series that we further express in equivalent sea level time series. The short-term trend in total water storage adjusted over this 7-year time span is positive and amounts to 80.6 ± 15.7 km**3/yr (net water storage excess). Most of the positive contribution arises from the Amazon and Siberian basins (Lena and Yenisei), followed by the Zambezi, Orinoco and Ob basins. The largest negative contributions (water deficit) come from the Mississippi, Ganges, Brahmaputra, Aral, Euphrates, Indus and Parana. Expressed in terms of equivalent sea level, total water volume change over 2002-2009 leads to a small negative contribution to sea level of -0.22 ± 0.05 mm/yr. The time series for each basin clearly show that year-to-year variability dominates so that the value estimated in this study cannot be considered as representative of a long-term trend. We also compare the interannual variability of total land water storage (removing the mean trend over the studied time span) with interannual variability in sea level (corrected for thermal expansion). A correlation of ~0.6 is found. Phasing, in particular, is correct. Thus, at least part of the interannual variability of the global mean sea level can be attributed to land water storage fluctuations.
    Keywords: Area; Error, absolute; GRACE satellite data, processed; International Polar Year (2007-2008); ipy; IPY; ORDINAL NUMBER; River; Water storage, trend
    Type: Dataset
    Format: text/tab-separated-values, 132 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ponte, R. M., Carson, M., Cirano, M., Domingues, C. M., Jevrejeva, S., Marcos, M., Mitchum, G., van de Wal, R. S. W., Woodworth, P. L., Ablain, M., Ardhuin, F., Ballu, V., Becker, M., Benveniste, J., Birol, F., Bradshaw, E., Cazenave, A., De Mey-Fremaux, P., Durand, F., Ezer, T., Fu, L., Fukumori, I., Gordon, K., Gravelle, M., Griffies, S. M., Han, W., Hibbert, A., Hughes, C. W., Idier, D., Kourafalou, V. H., Little, C. M., Matthews, A., Melet, A., Merrifield, M., Meyssignac, B., Minobe, S., Penduff, T., Picot, N., Piecuch, C., Ray, R. D., Rickards, L., Santamaria-Gomez, A., Stammer, D., Staneva, J., Testut, L., Thompson, K., Thompson, P., Vignudelli, S., Williams, J., Williams, S. D. P., Woppelmann, G., Zanna, L., & Zhang, X. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, 6, (2019): 437, doi:10.3389/fmars.2019.00437.
    Description: A major challenge for managing impacts and implementing effective mitigation measures and adaptation strategies for coastal zones affected by future sea level (SL) rise is our limited capacity to predict SL change at the coast on relevant spatial and temporal scales. Predicting coastal SL requires the ability to monitor and simulate a multitude of physical processes affecting SL, from local effects of wind waves and river runoff to remote influences of the large-scale ocean circulation on the coast. Here we assess our current understanding of the causes of coastal SL variability on monthly to multi-decadal timescales, including geodetic, oceanographic and atmospheric aspects of the problem, and review available observing systems informing on coastal SL. We also review the ability of existing models and data assimilation systems to estimate coastal SL variations and of atmosphere-ocean global coupled models and related regional downscaling efforts to project future SL changes. We discuss (1) observational gaps and uncertainties, and priorities for the development of an optimal and integrated coastal SL observing system, (2) strategies for advancing model capabilities in forecasting short-term processes and projecting long-term changes affecting coastal SL, and (3) possible future developments of sea level services enabling better connection of scientists and user communities and facilitating assessment and decision making for adaptation to future coastal SL change.
    Description: RP was funded by NASA grant NNH16CT00C. CD was supported by the Australian Research Council (FT130101532 and DP 160103130), the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580), and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. SJ was supported by the Natural Environmental Research Council under Grant Agreement No. NE/P01517/1 and by the EPSRC NEWTON Fund Sustainable Deltas Programme, Grant Number EP/R024537/1. RvdW received funding from NWO, Grant 866.13.001. WH was supported by NASA (NNX17AI63G and NNX17AH25G). CL was supported by NASA Grant NNH16CT01C. This work is a contribution to the PIRATE project funded by CNES (to TP). PT was supported by the NOAA Research Global Ocean Monitoring and Observing Program through its sponsorship of UHSLC (NA16NMF4320058). JS was supported by EU contract 730030 (call H2020-EO-2016, “CEASELESS”). JW was supported by EU Horizon 2020 Grant 633211, Atlantos.
    Keywords: Coastal sea level ; Sea-level trends ; Coastal ocean modeling ; Coastal impacts ; Coastal adaptation ; Observational gaps ; Integrated observing system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...