GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Schlagwörter
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2021-04-23
    Beschreibung: Ongoing acidification of the ocean through uptake of anthropogenic CO2 is known to affect marine biota and ecosystems with largely unknown consequences for marine food webs. Changes in food web structure have the potential to alter trophic transfer, partitioning, and biogeochemical cycling of elements in the ocean. Here we investigated the impact of realistic end-of-the-century CO2 concentrations on the development and partitioning of the carbon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem (Gullmar Fjord, Sweden). We covered the entire winter-to-summer plankton succession (100 days) in two sets of five pelagic mesocosms, with one set being CO2 enriched (~760 μatm pCO2) and the other one left at ambient CO2 concentrations. Elemental mass balances were calculated and we highlight important challenges and uncertainties we have faced in the closed mesocosm system. Our key observations under high CO2 were: (1) A significantly amplified transfer of carbon, nitrogen, and phosphorus from primary producers to higher trophic levels, during times of regenerated primary production. (2) A prolonged retention of all three elements in the pelagic food web that significantly reduced nitrogen and phosphorus sedimentation by about 11 and 9%, respectively. (3) A positive trend in carbon fixation (relative to nitrogen) that appeared in the particulate matter pool as well as the downward particle flux. This excess carbon counteracted a potential reduction in carbon sedimentation that could have been expected from patterns of nitrogen and phosphorus fluxes. Our findings highlight the potential for ocean acidification to alter partitioning and cycling of carbon and nutrients in the surface ocean but also show that impacts are temporarily variable and likely depending upon the structure of the plankton food web.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-02-08
    Beschreibung: Ocean acidification (OA) is expected to alter plankton community structure in the future ocean. This, in turn, could change the composition of sinking organic matter and the efficiency of the biological carbon pump. So far, most OA experiments involving entire plankton communities have been conducted in meso- to eutrophic environments. However, recent studies suggest that OA effects may be more pronounced during prolonged periods of nutrient limitation. In this study, we investigated how OA-induced changes in low-nutrient adapted plankton communities of the subtropical North Atlantic Ocean may affect particulate organic matter (POM) standing stocks, POM fluxes, and POM stoichiometry. More specifically, we compared the elemental composition of POM suspended in the water column to the corresponding sinking material collected in sediment traps. Three weeks into the experiment, we simulated a natural upwelling event by adding nutrient-rich deep-water to all mesocosms, which induced a diatom-dominated phytoplankton bloom. Our results show that POM was more efficiently retained in the water column in the highest CO2 treatment levels (〉 800 μatm pCO2) subsequent to this bloom. We further observed significantly lower C:N and C:P ratios in post-bloom sedimented POM in the highest CO2 treatments, suggesting that degradation processes were less pronounced. This trend is most likely explained by differences in micro- and mesozooplankton abundance during the bloom and post-bloom phase. Overall, this study shows that OA can indirectly alter POM fluxes and stoichiometry in subtropical environments through changes in plankton community structure.
    Materialart: Article , PeerReviewed
    Format: text
    Format: archive
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-02-08
    Beschreibung: Ocean acidification—the decrease in seawater pH due to rising CO2 concentrations—has been shown to lower survival in early life stages of fish and, as a consequence, the recruitment of populations including commercially important species. To date, ocean-acidification studies with fish larvae have focused on the direct physiological impacts of elevated CO2, but largely ignored the potential effects of ocean acidification on food web interactions. In an in situ mesocosm study on Atlantic herring (Clupea harengus) larvae as top predators in a pelagic food web, we account for indirect CO2 effects on larval survival mediated by changes in food availability. The community was exposed to projected end-of-the-century CO2 conditions (~760 µatm pCO2) over a period of 113 days. In contrast with laboratory studies that reported a decrease in fish survival, the survival of the herring larvae in situ was significantly enhanced by 19 ± 2%. Analysis of the plankton community dynamics suggested that the herring larvae benefitted from a CO2-stimulated increase in primary production. Such indirect effects may counteract the possible direct negative effects of ocean acidification on the survival of fish early life stages. These findings emphasize the need to assess the food web effects of ocean acidification on fish larvae before we can predict even the sign of change in fish recruitment in a high-CO2 ocean.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2021-02-08
    Beschreibung: Particle aggregation and the consequent formation of marine snow alter important properties of biogenic particles (size, sinking rate, degradability), thus playing a key role in controlling the vertical flux of organic matter to the deep ocean. However, there are still large uncertainties about rates and mechanisms of particle aggregation, as well as the role of plankton community structure in modifying biomass transfer from small particles to large fast-sinking aggregates.Here we present data from a high-resolution underwater camera system that we used to observe particle size distributions and formation of marine snow (aggregates 〉0.5 mm) over the course of a 9-week in situ mesocosm experiment in the Eastern Subtropical North Atlantic. After an oligotrophic phase of almost 4 weeks, addition of nutrient-rich deep water (650 m) initiated the development of a pronounced diatom bloom and the subsequent formation of large marine snow aggregates in all 8 mesocosms. We observed a substantial time lag between the peaks of chlorophyll a and marine snow biovolume of 9-12 days, which is much longer than previously reported and indicates a marked temporal decoupling of phytoplankton growth and marine snow formation during our study. Despite this time lag, our observations revealed substantial transfer of biomass from small particle sizes (single phytoplankton cells and chains) to marine snow aggregates of up to 2.5 mm diameter (ESD), with most of the biovolume being contained in the 0.5-1 mm size range. Notably, the abundance and community composition of mesozooplankton had a substantial influence on the temporal development of particle size spectra and formation of marine snow aggregates: While higher copepod abundances were related to reduced aggregate formation and biomass transfer towards larger particle sizes, the presence of appendicularia and doliolids enhanced formation of large marine snow.Furthermore, we combined in situ particle size distributions with measurements of particle sinking velocity to compute instantaneous (potential) vertical mass flux. However, somewhat surprisingly, we did not find a coherent relationship between our computed flux and measured vertical mass flux (collected by sediment traps in 15 m depth). Although the onset of measured vertical flux roughly coincided with the emergence of marine snow, we found substantial variability in mass flux among mesocosms that was not related to marine snow numbers, and was instead presumably driven by zooplankton-mediated alteration of sinking biomass and export of small particles (fecal pellets).Altogether, our findings highlight the role of zooplankton community composition and feeding interactions on particle size spectra and formation of marine snow aggregates, with important implications for our understanding of particle aggregation and vertical flux of organic matter in the ocean.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-04-23
    Beschreibung: Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. Increasing evidence indicates that these changes—summarized by the term ocean acidification (OA)—can significantly affect marine food webs and biogeochemical cycles. However, current scientific knowledge is largely based on laboratory experiments with single species and artificial boundary conditions, whereas studies of natural plankton communities are still relatively rare. Moreover, the few existing community-level studies were mostly conducted in rather eutrophic environments, while less attention has been paid to oligotrophic systems such as the subtropical ocean gyres. Here we report from a recent in situ mesocosm experiment off the coast of Gran Canaria in the eastern subtropical North Atlantic, where we investigated the influence of OA on the ecology and biogeochemistry of plankton communities in oligotrophic waters under close-to-natural conditions. This paper is the first in this Research Topic of Frontiers in Marine Biogeochemistry and provides (1) a detailed overview of the experimental design and important events during our mesocosm campaign, and (2) first insights into the ecological responses of plankton communities to simulated OA over the course of the 62-day experiment. One particular scientific objective of our mesocosm experiment was to investigate how OA impacts might differ between oligotrophic conditions and phases of high biological productivity, which regularly occur in response to upwelling of nutrient-rich deep water in the study region. Therefore, we specifically developed a deep water collection system that allowed us to obtain ~85 m3 of seawater from ~650 m depth. Thereby, we replaced ~20% of each mesocosm's volume with deep water and successfully simulated a deep water upwelling event that induced a pronounced plankton bloom. Our study revealed significant effects of OA on the entire food web, leading to a restructuring of plankton communities that emerged during the oligotrophic phase, and was further amplified during the bloom that developed in response to deep water addition. Such CO2-related shifts in plankton community composition could have consequences for ecosystem productivity, biomass transfer to higher trophic levels, and biogeochemical element cycling of oligotrophic ocean regions.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2021-04-23
    Beschreibung: Ocean acidification, the change in seawater carbonate chemistry due to the uptake of anthropogenic CO2, affects the physiology of marine organisms in multiple ways1. Diverse competitive and trophic interactions transform the metabolic responses to changes in community composition, seasonal succession and potentially geographical distribution of species. The health of ocean ecosystems depends on whether basic biotic functions are maintained, ecosystem engineers and keystone species are retained, and the spread of nuisance species is avoided2. Here, we show in a field experiment that the toxic microalga Vicicitus globosus has a selective advantage under ocean acidification, increasing its abundance in natural plankton communities at CO2 levels higher than 600 µatm and developing blooms above 800 µatm CO2. The mass development of V. globosus has had a dramatic impact on the plankton community, preventing the development of the micro- and mesozooplankton communities, thereby disrupting trophic transfer of primary produced organic matter. This has prolonged the residence of particulate matter in the water column and caused a strong decline in export flux. Considering its wide geographical distribution and confirmed role in fish kills3, the proliferation of V. globosus under the IPCC4 CO2 emission representative concentration pathway (RCP4.5 to RCP8.5) scenarios may pose an emergent threat to coastal communities, aquaculture and fisheries.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2021-04-23
    Beschreibung: Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2) leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes–summarized by the term ocean acidification (OA)–could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (~380 μatm pCO2), whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (~760 μatm pCO2). We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a “long-term mesocosm” approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1) Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2) Plankton communities fueled by regenerated nutrients may be more responsive to changing carbonate chemistry than those having access to high inorganic nutrient concentrations and may deserve particular attention in future studies.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-09-23
    Beschreibung: Increasing anthropogenic CO2 concentration in the atmosphere is altering sea water carbonate chemistry with unknown biological and ecological consequences. Whereas some reports are beginning to emerge on the effects of ocean acidification (OA) on fish, very little is known about the impact of OA on jellyfish. In particular, the benthic stages of metagenetic species are virtually unstudied in this context despite their obvious importance for bloom dynamics. Hence, we conducted tri-trophic food chain experiments using the algae Rhodomonas salina as the primary producer, the copepod Acartia tonsa as the primary consumer and the benthic life stage of the scyphozoans Cyanea capillata and Chrysaora hysoscella as secondary consumers. Two experiments were conducted examining the effects of different levels of CO2 and food quality (experiment 1) and the effect of food quality and quantity (experiment 2) on the growth and respiration of scyphozoan polyps. Polyp growth and carbon content (µg polyp−1) were not affected by the CO2 treatments, but were significantly negatively affected by P limitation of the food in C. capillata but not in Ch. hysoscella. Growth and carbon content were reduced in low-food treatments, but increased with decreasing P limitation in high- and low-food treatments in C. capillata. Respiration was not significantly influenced by food quality and quantity in C. capillata. We conclude that phosphorus can be a limiting factor affecting the fitness of scyphopolyps and that P-limited food is of poor nutritional quality. Furthermore, OA, at least using realistic end-of-century scenarios, will have no direct effect on the growth of scyphistomae
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2021-04-23
    Beschreibung: The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-02-01
    Beschreibung: Global change is affecting marine ecosystems through a combination of different stressors such as warming, ocean acidification and oxygen depletion. Very little is known about the interactions among these factors, especially with respect to gelatinous zooplankton. Therefore, in this study we investigated the direct effects of pH, temperature and oxygen availability on the moon jellyfish Aurelia aurita, concentrating on the ephyral life stage. Starved one-day-old ephyrae were exposed to a range of pCO2 (400–4000 ppm) and three different dissolved oxygen levels (from saturated to hypoxic conditions), in two different temperatures (5 and 15 °C) for 7 days. Carbon content and swimming activity were analysed at the end of the incubation period, and mortality noted. General linearized models were fitted through the data, with the best fitting models including two- and three-way interactions between pCO2, temperature and oxygen concentration. The combined effect of the stressors was small but significant, with the clearest negative effect on growth caused by the combination of all three stressors present (high temperature, high CO2, low oxygen). We conclude that A. aurita ephyrae are robust and that they are not likely to suffer from these environmental stressors in a near future.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...