GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-15
    Description: Twenty-two gas samples were collected in August 2012 in the area of Amik basin (Turkey). Two samples were collected from gas seeps, one was a bubbling gas in a thermal spring, while the remaining were dissolved gases from cold and thermal groundwaters (T 16-43 °C). All gases were analysed for their chemical composition (He, H2, O2, N2, CH4 and CO2) and for their He isotopic composition. Dissolved gases were also analysed for the carbon isotopic composition of the total dissolved carbon (TDC), while free gases also for their higher hydrocarbon (C1 – C5) content and for D of H2 and CH4, 13C of CH4 Basing on their chemical composition, the gases can be roughly subdivided in three groups. Most of the dissolved gases (16) belonging to the first group were collected from springs or shallow wells (〈 150 m depth). All these samples contain mainly atmospheric gasses with very limited H2 (〈 80 ppm) and CH4 (1 – 2700 ppm) contents and minor concentrations of CO2 (0.5 – 11.2 %). The isotopic composition of TDC evidences an almost organic contribution. The only exception is represented by the CO2-richest sample where a small but significant mantle contribution is found. Such contribution can also be evidenced in its 3He rich isotopic composition. Further three samples of this group evidence a small mantle contribution. These samples were collected in the northern part of the basin along the main tectonic structures delimiting the basin and close to areas with quaternary volcanic activity. A second group is composed by two dissolved gases collected from deep boreholes (〉 1200 m depth). Their composition is typical of hydrocarbon reservoirs being very rich in CH4 (〉 78 %) and N2 (〉 13%). Also the water composition is typical of saline connate waters (Cl- and B-rich, SO4-poor). C-isotopic composition of methane ( 13C -65% ) points to a biogenic origin while He-isotopic composition indicates a prevailing crustal signature for one (R/Ra 0.16) of the sites and small mantle contribution for the other (R/Ra 0.98). To the last group belong four gas samples taken at two sites within the ophiolitic basement that crops out west of the basin. These gases have the characteristic composition of gas generated by low temperature serpentinisation processes with high hydrogen (37 – 50 %) and methane (10 – 61 %) concentrations. While all gases show an almost identical D-H2 of -750h those of one of the two sites display an isotopic composition of methane ( 13C -5h D -105% ) and a C1/[C2+C3] ( 100) ratio typical of abiogenic hydrocarbons and mantle-type helium (R/Ra: 1.33), while those of the other site evidence a contribution of a crustal (thermogenic) component ( 13C-CH4 -30h D -325h C1/[C2+C3] 3000). Such crustal contribution is also supported by higher N2 contents (40% instead of 2%) and lower He-isotopic composition (R/Ra 0.07). The preliminary results highlight contributions of mantle-derived volatiles to the fluids vented along the Amik Basin. The main tectonic structure of the area, the Death Sea Fault, and other parallel structures crossing the basin seem to be the responsible for deep-originated volatiles drainage towards shallow levels.
    Description: Submitted
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: gas geochemistry ; water chemistry ; stable isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-15
    Description: The study area is close to the boundary of three tectonic plates (Anatolian, Arabian, and African plates) and is characterized by important tectonic lineaments, which consist mainly of the Dead Sea Fault (DSF), the Karasu Fault, and the East Anatolian Fault (EAF) systems. To understand the origin of soil gas emanation and its relationships with the tectonics of the Amik Basin (Hatay), a detailed soil gas sampling was systematically performed. Together with CO2 flux measurements, N220 soil gas samples were analyzed for Rn and CO2 concentrations. The distribution of soil Rn (kBq/m3), CO2 concentration (ppm), and CO2 flux (g/m2/day) in the area appears as a point source (spot) and/or diffuses (halo) anomalies along the buried faults/fractures due to crustal leaks. The results revealed that Rn and CO2 concentrations in the soil gas show anomalous values at the specific positions in the Amik Basin. The trace of these anomalous values is coincident with the N-S trending DSF. CO2 is believed to act as a carrier for Rn gas. Based on the Rn and CO2 concentrations of soil gases, at least three gas components are required to explain the observed variations. In addition to the atmospheric component, two other gas sources can be recognized. One is the deep crust component, which exhibits high Rn and CO2 concentrations, and is considered the best indicator for the surface location of fault/fracture zones in the region. The other component is a shallower gas source with high Rn concentration and low CO2 concentration. Moreover, He isotopic compositions of representative samples vary from 0.94 to 0.99 Ra, illustrating that most samples have a soil air component and may have mixed with some crustal component, without significant input of the mantle component. Based on the repeated measurements at a few sites, soil gas concentrations at the same site were observed to be higher in 2014 than in 2013, which may be associated with the activity of the DSF in 2013–2014. This suggests that soil gas variations at fault zone are closely related to the local crustal stress, and hence are suitable for monitoring fault activities.
    Description: Published
    Description: 129–146
    Description: 6T. Variazioni delle caratteristiche crostali e precursori
    Description: JCR Journal
    Keywords: Dead Sea Fault ; Karasu Fault ; Amik Basin ; Radon ; Carbon Dioxide ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-15
    Description: The Amik Basin is an asymmetrical composite transtensional basin developed between the seismically active left-lateral Dead Sea Fault (DSF) splays and the left-lateral oblique-slip Karasu Fault segment during neotectonic period. The relationship between the DSF and the East Anatolian Fault Zone is important as it represents a triple junction between Arabian Plate, African Plate and Anatolian Block in which the Amik Basin developed. The basin was formed on a pre-Miocene basement consisting of two rock series: Paleozoic crustal units with a Mesozoic allochthonous ophiolitic complex and ~1300 m thick Upper Miocene-Lower Pliocene sedimentary sequence. Plio-Quaternary sediments and Quaternary volcanics unconformably overlie the deformed and folded Miocene beds. Quaternary alkali-basaltic volcanism, derived from a metasomatized asthenospheric or lithospheric mantle, is most probably related to the syn-collisional transtensional strike-slip deformation in the area. Active faults in the region have the potential to generate catastrophic earthquakes (M〉7). Nineteen samples of cold and thermal groundwaters have been collected over the Amik Basin area for dissolved gas analyses as well as two samples from the gas seeps, and one bubbling gas from a thermal spring Samples were analysed for their chemical and isotopic (He, C) composition. On the basis of their chemical composition, three main groups can be recognized. Most of the dissolved gases (16; Group I) collected from springs or shallow wells (〈 150 m depth), contain mainly atmospheric gasses with very limited H2 (〈 80 ppm) and CH4 (1– 2700 ppm) contents and minor concentrations of CO2 (0.5–11.2 %). The isotopic composition of Total Dissolved Carbon evidences a prevailing organic contribution with possible dissolution of carbonate rocks. However the CO2-richest sample shows a small but significant deep (probably mantle) contribution which is also evidenced by its He isotopic composition. Further three samples, taken from the northern part of the basin close to Quaternary volcanic outcrops and main tectonic structures, also exhibit a small mantle He contribution (Fig. 1). The two dissolved gases (Group II) collected from deep boreholes (〉 1200 m depth) are typical of hydrocarbon reservoirs being very rich in CH4 (〉 78 %) and N2 (〉 13%). The water composition of these samples is also distinctive of saline connate waters (Cl- and B-rich, SO4-poor). Isotopic composition of methane (δ13C ~ -65‰) indicates a biogenic origin while He-isotopic composition points to a prevailing crustal signature for one (R/Ra 0.16) of the sites and a small mantle contribution for the other (R/Ra 0.98) (Fig. 1). The three free gas samples (Group III), taken at two sites within the ophiolitic basement west of the basin, have the typical composition of gas generated by low temperature serpentinisation processes with high hydrogen (37–50 %) and methane (10–61 %) concentrations. While all three gases show an almost identical δD-H2 of ~ -750‰, two of them display an isotopic composition of methane (δ13C ~ -5‰; δD ~ -105‰) and a C1/[C2+C3] ratio (~100) typical of abiogenic hydrocarbons and a significant contribution of mantle-type helium (R/Ra: 1.33). The composition of these two gasses is comparable to that of the gasses issuing in similar geologic conditions (Chimera-Turkey, Zambales-Philippine and Oman ophiolites). The gas composition of the other site evidences a contribution of a crustal (thermogenic) component (δ13C-CH4 ~ -30‰; δD-CH4 ~ -325‰; C1/[C2+C3] ~ 3000). Such crustal contribution is also supported by higher N2 contents (40% instead of 2%) and lower He-isotopic composition (R/Ra 0.07) (Fig. 1). These first results highlight contributions of mantle-derived volatiles possibly drained towards shallow levels by the DSF and other parallel structures crossing the basin showing a tectonic control of the fluids circulating within the Basin .
    Description: Published
    Description: Patras, Greece
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: dissolved gases ; natural gas manifestations ; helium isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Inst. and Methods in Physics Research, B 23 (1987), S. 476-481 
    ISSN: 0168-583X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...