GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-13
    Description: Observation‐based and modeling studies have identified the Eastern Mediterranean and Middle East (EMME) region as a prominent climate change hotspot. While several initiatives have addressed the impacts of climate change in parts of the EMME, here we present an updated assessment, covering a wide range of timescales, phenomena and future pathways. Our assessment is based on a revised analysis of recent observations and projections and an extensive overview of the recent scientific literature on the causes and effects of regional climate change. Greenhouse gas emissions in the EMME are growing rapidly, surpassing those of the European Union, hence contributing significantly to climate change. Over the past half‐century and especially during recent decades, the EMME has warmed significantly faster than other inhabited regions. At the same time, changes in the hydrological cycle have become evident. The observed recent temperature increase of about 0.45°C per decade is projected to continue, although strong global greenhouse gas emission reductions could moderate this trend. In addition to projected changes in mean climate conditions, we call attention to extreme weather events with potentially disruptive societal impacts. These include the strongly increasing severity and duration of heatwaves, droughts and dust storms, as well as torrential rain events that can trigger flash floods. Our review is complemented by a discussion of atmospheric pollution and land‐use change in the region, including urbanization, desertification and forest fires. Finally, we identify sectors that may be critically affected and formulate adaptation and research recommendations toward greater resilience of the EMME region to climate change.
    Description: Key Points: The Eastern Mediterranean and Middle East is warming almost two times faster than the global average and other inhabited parts of the world. Climate projections indicate a future warming, strongest in summers. Precipitation will likely decrease, particularly in the Mediterranean. Virtually all socio‐economic sectors will be critically affected by the projected changes.
    Description: European Union Horizon 2020
    Description: https://esg-dn1.nsc.liu.se/search/esgf-liu/
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied climatology 64 (1999), S. 189-199 
    ISSN: 1434-4483
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Summary  Anomalously wet and dry months in the Mediterranean basin were identified during the period 1860–1990 from observations at five stations located along the west-east axis of the Mediterranean basin (Barcelona, Florence, Malta, Athens and Jerusalem), supplemented by data from Madrid and Lisbon. Wet and dry months were characterized by hydric indices (HI) based on values of the standardized precipitation anomalies. Different patterns of anomalously wet and dry months were qualitatively identified on the basis of the spatial distributions of the hydric indices. The standardized sea level pressure values at 56 grid points in the domain 35° N–65° N, 30° W–40° E, for each of the anomalously wet and dry months, were subjected to T-mode Principal Component Analysis. The mean hydric indices associated with each principal component in each season are arranged in four distinct different spatial distributions for wet months and in three for dry months as following: (a) Mediterranean wide distribution of positive/negative anomalies; (b1) Strong positive anomalies to the west, but weaker to eastern Mediterranean; (b2) Strong negative anomalies to the west, but weaker or normal to the east; (c1) Strong positive anomalies to the west and to the east and weaker ones to the central Mediterranean; (c2) Negative anomalies to the west and east, but weaker, or normal, or positive to the central Mediterranean; (d) Relatively strong positive anomalies to the east and weaker ones to the western Mediterranean. Finally, monthly mean charts of standardized anomaly and mean sea level pressure are presented for each principalcomponent in each season. These charts are used to interpret the spatial distribution of the positive and negative precipitation anomalies in terms of mean circulation over the domain.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-25
    Description: We present an analysis of daily extreme precipitation events for the extended winter season (October–March) at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions and an increase of the low- to mid-tropospheric moisture. Furthermore, the jet stream position (during ≥5-year return level events) supports the eastern basin being in a divergence area, where ascent motions are favoured. Our results contribute to an improved understanding of daily precipitation extremes in the cold season and associated large scale atmospheric features.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-31
    Description: Proxy records and results of a three dimensional climate model show that European summer temperatures roughly a millennium ago were comparable to those of the last 25 years of the 20th century, supporting the existence of a summer "Medieval Warm Period" in Europe. Those two relatively mild periods were separated by a rather cold era, often referred to as the "Little Ice Age". Our modelling results suggest that the warm summer conditions during the early second millennium compared to the climate background state of the 13th–18th century are due to a large extent to the long term cooling induced by changes in land-use in Europe. During the last 200 years, the effect of increasing greenhouse gas concentrations, which was partly levelled off by that of sulphate aerosols, has dominated the climate history over Europe in summer. This induces a clear warming during the last 200 years, allowing summer temperature during the last 25 years to reach back the values simulated for the early second millennium. Volcanic and solar forcing plays a weaker role in this comparison between the last 25 years of the 20th century and the early second millennium. Our hypothesis appears consistent with proxy records but modelling results have to be weighted against the existing uncertainties in the external forcing factors, in particular related to land-use changes, and against the uncertainty of the regional climate sensitivity. Evidence for winter is more equivocal than for summer. The forced response in the model displays a clear temperature maximum at the end of the 20th century. However, the uncertainties are too large to state that this period is the warmest of the past millennium in Europe during winter.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-28
    Description: Until now, proxy records have been the primary tool for quantitative reconstructions of the physical world of the ancient and late antique Mediterranean. This chapter demonstrates the combined use of proxy datasets and the hitherto underutilized potential of earth system models in the scientific and historical study of past environmental variations and impacts on human societies. Results from model simulations are able to explain hydroclimatic anomalies observed in the proxy records and provide links to relevant mechanisms. The Late Roman Dry Period and the Late Roman Wet Period of the mid-fourth to early eighth centuries AD are each associated with the increase in the frequency of subsistence crises and with the accelerated infrastructural adaptations of communities and agricultural expansion, respectively. The chapter concludes with an examination of the historical and climatic contexts behind one such anomaly, a subsistence crisis in Cappadocia in the late 300s AD.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Precipitation extremes are expected to increase in a warming climate, thus it is essential to characterise their potential future changes. Here we evalu- ate eight high-resolution Global Climate Model simulations in the twenti- eth century and provide new evidence on projected global precipitation ex- tremes for the 21st century. A significant intensification of daily extremes for all seasons is projected for the mid and high latitudes of both hemispheres at the end of the present century. For the subtropics and tropics, the lack of reliable and consistent estimations found for both the historical and fu- ture simulations might be connected with model deficiencies in the repre- sentation of organised convective systems. Low inter-model variability and good agreement with high-resolution regional observations are found for the twentieth century winter over the Northern Hemisphere mid and high lat- itudes.
    Description: Published
    Description: 4887–4892
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: extreme events ; precipitation ; cmip5 ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Climate model simulations are currently the main tool to provide information about possible future climates. Apart from scenario uncertainties and model error, internal variability is a major source of uncertainty, complicating predictions of future changes. Here, a suite of statistical tests is proposed to determine the shortest time window necessary to capture the internal precipitation variability in a stationary climate. The length of this shortest window thus expresses internal variability in terms of years. The method is applied globally to daily precipitation in a 200-yr preindustrial climate simulation with the CMCC-CM coupled general circulation model. The two-sample Cramér–von Mises test is used to assess differences in precipitation distribution, the Walker test accounts for multiple testing at grid cell level, and field significance is determined by calculating the Bejamini–Hochberg false-discovery rate. Results for the investigated simulation show that internal variability of daily precipitation is regionally and seasonally dependent and that regions requiring long time windows do not necessarily coincide with areas with large standard deviation. The estimated time scales are longer over sea than over land, in the tropics than in midlatitudes, and in the transitional seasons than in winter and summer. For many land grid cells, 30 seasons suffice to capture the internal variability of daily precipitation. There exist regions, however, where even 50 years do not suffice to sample the internal variability. The results show that diagnosing daily precipitation change at different times based on fixed global snapshots of one climate simulation might not be a robust detection method.
    Description: Published
    Description: 3624–3630
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: precipitation ; internal variability ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...