GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: A free-air CO2 enrichment (FACE) experiment was conducted at Maricopa, Arizona, on wheat from December 1992 through May 1993. The FACE apparatus maintained the CO2 concentration, [CO2], at 550 μmol mol−1 across four replicate 25-m-diameter circular plots under natural conditions in an open field. Four matching Control plots at ambient [CO2] (about 370 μmol mol−1) were also installed in the field. In addition to the two levels of [CO2], there were ample (Wet) and limiting (Dry) levels of water supplied through a subsurface drip irrigation system in a strip, split-plot design.Measurements were made of net radiation, Rn; soil heat flux, Go; soil temperature; foliage or surface temperature; air dry and wet bulb temperatures; and wind speed. Sensible heat flux, H, was calculated from the wind and temperature measurements. Latent heat flux, λET, and evapotranspiration, ET, were determined as the residual in the energy balance. The FACE treatment reduced daily total Rn by an average 4%. Daily FACE sensible heat flux, H, was higher in the FACE plots. Daily latent heat flux, λET, and evapotranspiration, ET, were consistently lower in the FACE plots than in the Control plots for most of the growing season, about 8% on the average.Net canopy photosynthesis was stimulated by an average 19 and 44% in the Wet and Dry plots, respectively, by elevated [CO2] for most of the growing season. No significant acclimation or down regulation was observed. There was little above-ground growth response to elevated [CO2] early in the season when temperatures were cool. Then, as temperatures warmed into spring, the FACE plants grew about 20% more than the Control plants at ambient [CO2], as shown by above-ground biomass accumulation. Root biomass accumulation was also stimulated about 20%. In May the FACE plants matured and senesced about a week earlier than the Controls in the Wet plots. The FACE plants averaged 0.6 °C warmer than the Controls from February through April in the well-watered plots, and we speculate that this temperature rise contributed to the earlier maturity. Because of the acceleration of senescence, there was a shortening of the duration of grain filling, and consequently, there was a narrowing of the final biomass and yield differences. The 20% mid-season growth advantage of FACE shrunk to about an 8% yield advantage in the Wet plots, while the yield differences between FACE and Control remained at about 20% in the Dry plots.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: To test the predictions that plants will have a larger flavonoid concentration in a future world with a CO2-enriched atmosphere, wheat (Triticum aestivum L. cv. Yecora Rojo) was grown in a field experiment using FACE (free-air CO2 enrichment) technology under two levels of atmospheric CO2 concentration: ambient (370 μmol mol−1) and enriched (550 μmol mol−1), and under two levels of irrigation: well-watered (100% replacement of potential evapotranspiration) and half-watered. We also studied the effects of CO2 on the concentration of total non-structural carbohydrates (TNC) and nitrogen (N), two parameters hypothesized to be linked to flavonoid metabolism. Throughout the growth cycle the concentration of isoorientin, the most abundant flavonoid, decreased by 62% (from an average of 12.5 mg g−1 on day of year (DOY) 41 to an average of 4.8 mg g−1 on DOY 123), whereas the concentration of tricin, another characteristic flavone, increased by two orders of magnitude (from an average of 0.007 mg g−1 of isoorientin equivalents on DOY 41 to an average of 0.6 mg g−1 of isoorientin equivalents on DOY 123). Although flavonoid concentration was dependent on growth stage, the effects of treatments on phenology did not invalidate the comparisons between treatments. CO2-enriched plants had higher flavonoid concentrations (14% more isoorientin, an average of 7.0 mg g−1 for ambient CO2 vs an average of 8.0 mg g−1 for enriched CO2), higher TNC concentrations and lower N concentrations in ukpper canopy leaves throughout the growth cycle. Well-irrigated plants had higher flavonoid concentrations (11% more isoorientin, an average of 7.1 mg g−1 for half watered vs an average of 7.9 mg g−1 for well-watered) throughout the growth cycle, whereas the effect of irrigation treatments on TNC and N was more variable. These results are in accordance with the hypotheses that higher carbon availability promoted by CO2-enrichment provides carbon that can be invested in carbon-based secondary compounds such as flavonoids. The rise in atmospheric CO2 may thus indirectly affect wheat-pest relations, alter the pathogen predisposition and improve the UV-B protection by changing flavonoid concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5079
    Keywords: acclimation ; climate change ; CO2 ; down-regulation ; global change ; photosynthesis ; stomatal conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Atmospheric CO2 concentration continues to rise. It is important, therefore, to determine what acclimatory changes will occur within the photosynthetic apparatus of wheat (Triticum aestivum L. cv. Yecora Rojo) grown in a future high-CO2 world at ample and limited soil N contents. Wheat was grown in an open field exposed to the CO2 concentration of ambient air [370 μmol (CO2) mol−1; Control] and air enriched to ∼200 μmol (CO2) mol−1 above ambient using a Free-Air CO2 Enrichment (FACE) apparatus (main plot). A High (35 g m−2) or Low (7 and 1.5 g m−2 for 1996 and 1997, respectfully) level of N was applied to each half of the main CO2 treatment plots (split-plot). Under High-N, FACE reduced stomatal conductance (g s) by 30% at mid-morning (2 h prior to solar noon), 36% at midday (solar noon) and 27% at mid-afternoon (2.5 h after solar noon), whereas under Low-N, g s was reduced by as much as 31% at mid-morning, 44% at midday and 28% at mid-afternoon compared with Control. But, no significant CO2 × N interaction effects occurred. Across seasons and growth stages, daily accumulation of carbon (A′) was 27% greater in FACE than Control. High-N increased A′ by 18% compared with Low-N. In contrast to results for g s, however, significant CO2 × N interaction effects occurred because FACE increased A′ by 30% at High-N, but by only 23% at Low-N. FACE enhanced the seasonal accumulation of carbon (A′′) by 29% during 1996 (moderate N-stress), but by only 21% during 1997 (severe N-stress). These results support the premise that in a future high-CO2 world an acclimatory (down-regulation) response in the photosynthetic apparatus of field-grown wheat is anticipated. They also demonstrate, however, that the stimulatory effect of a rise in atmospheric CO2 on carbon gain in wheat can be maintained if nutrients such as nitrogen are in ample supply.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5079
    Keywords: global change ; elevated carbon dioxide ; photosynthetic acclimation ; Rubisco
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have examined the photosynthetic acclimation of wheat leaves grown at an elevated CO2 concentration, and ample and limiting N supplies, within a field experiment using free-air CO2 enrichment (FACE). To understand how leaf age and developmental stage affected any acclimation response, measurements were made on a vertical profile of leaves every week from tillering until maturity. The response of assimilation (A) to internal CO2 concentration (Ci) was used to estimate the in vivo carboxylation capacity (Vcmax) and maximum rate of ribulose-1,5-bisphosphate limited photosynthesis (A sat). The total activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and leaf content of Rubisco and the Light Harvesting Chlorophyll a/b protein associated with Photosystem II (LHC II), were determined. Elevated CO2 did not alter Vcmax in the flag leaf at either low or high N. In the older shaded leaves lower in the canopy, acclimatory decline in Vcmax and A sat was observed, and was found to correlate with reduced Rubisco activity and content. The dependency of acclimation on N supply was different at each developmental stage. With adequate N supply, acclimation to elevated CO2 was also accompanied by an increased LHC II/Rubisco ratio. At low N supply, contents of Rubisco and LHC II were reduced in all leaves, although an increased LHC II/Rubisco ratio under elevated CO2 was still observed. These results underscore the importance of leaf position, leaf age and crop developmental stage in understanding the acclimation of photosynthesis to elevated CO2 and nutrient stress.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1435-0653
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: 2 and limited soil nitrogen on spring wheat (Triticum aestivum L.) at the University of Arizona's Maricopa Agricultural Center, near Phoenix, AZ. "Greenness" measurements were made during senescence of the crop with a color digital camera, a hand-held radiometer, and a SPAD chlorophyll meter. The green to red (G/R) for each pixel in an image was calculated and the average G/R computed for cropped images from a digital camera representing 1 m2 for each treatment and sample date. The normalized difference vegetation index (NVDI) was calculated from the red and near-infrared canopy reflectances measured with a hand held radiometer. A SPAD reading was obtained from randomly selected flag leaves. All three methods of measuring plant greenness showed similar temporal trends. The relationships between G/R with NDVI and SPAD were linear over most of the range of G/R. However, NDVI was more sensitive at low values than G/R. G/R was more sensitive above G/R values of 1.2 than SPAD because the upper limits of SPAD measurements were constrained by the amount of chlorophyll in the leaf, while G/R responded to both chlorophyll concentration in the leaves as well as the number of leaves present. Color digital imaging appears useful for quantifying the senescence of crop canopies. The cost of color digital cameras is expected to decrease and the quality and convenience of use to improve.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Crop science 39 (1999), S. 1083-1088 
    ISSN: 1435-0653
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Triticum aestivum L.) has been extensively researched, a complete description of the growth dynamics of the apex at elevated CO2 concentrations is lacking. This study determined the rates of main stem and tiller apical elongation and widening in plants grown under two levels of CO2 concentration. Spring wheat was grown at the University of Arizona's Maricopa Agricultural Center at elevated (550 μmol mol-1) or ambient (370 μmol mol-1) CO2 concentrations. Individual plant samples were collected at different developmental stages and dissected. After dissection, the lengths and widths of the apices of the main stem (MS), coleoptile tiller (T0), primary tillers (T1, T2, and T3), and secondary tillers (T00, T01, T02, T10, T11, and T12) were measured with a stage micrometer. Apex dimensions were fitted to an exponential model. Elevated CO2 increased the apex lengths of T2 at the double ridge stage, and of T3 and T10 at the double ridge and the terminal spikelet stages, and the apex widths of T2 at double ridge stage, and of T2, T3, T10, and T11 at the flag leaf appearance stage. Combining these results with a parallel study, the longer apices did not have more spikelet primordia, but wider apices had more floret primordia. Elevated CO2 changed apex elongation or widening patterns within a plant by enhancing elongation or widening rates of the MS, and later-formed tillers. Earlier-formed tillers were less responsive to elevated CO2 levels. This information will be used in modeling wheat apical development and grain production in the elevated atmospheric CO2 environments of the future.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5079
    Keywords: canopy architecture ; canopy photosynthesis ; CO2 enrichment ; global change ; leaf area index ; leaf tip angle ; nitrogen stress ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The response of whole-canopy net CO2 exchange rate (CER) and canopy architecture to CO2 enrichment and N stress during 1996 and 1997 for open-field-grown wheat ecosystem (Triticum aestivum L. cv. Yecora Rojo) are described. Every Control (C) and FACE (F) CO2 treatment (defined as ambient and ambient +200 μmol mol−1, respectively) contained a Low- and High-N treatment. Low-N treatments constituted initial soil content amended with supplemental nitrogen applied at a rate of 70 kg N ha−1 (1996) and 15 kg N ha−1 (1997), whereas High-N treatments were supplemented with 350 kg N ha−1 (1996 and 1997). Elevated CO2 enhanced season-long carbon accumulation by 8% and 16% under Low-N and High-N, respectively. N-stress reduced season-long carbon accumulation 14% under ambient CO2, but by as much as 22% under CO2 enrichment. Averaging both years, green plant area index (GPAI) peaked approximately 76 days after planting at 7.13 for FH, 6.00 for CH, 3.89 for FL, and 3.89 for CL treatments. Leaf tip angle distribution (LTA) indicated that Low-N canopies were more erectophile than those of High-N canopies: 48° for FH, 52° for CH, and 58° for both FL and CL treatments. Temporal trends in canopy greenness indicated a decrease in leaf chlorophyll content from the flag to flag-2 leaves of 25% for FH, 28% for CH, 17% for CL, and 33% for FL during 1997. These results indicate that significant modifications of canopy architecture occurs in response to both CO2 and N-stress. Optimization of canopy architecture may serve as a mechanism to diminish CO2 and N-stress effects on CER.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...