GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (4). 2830-2846 .
    Publication Date: 2020-02-06
    Description: The upstream sources and pathways of the Denmark Strait Overflow Water and their variability have been investigated using a high-resolution model hindcast. This global simulation covers the period from 1948 to 2009 and uses a fine model mesh (1/20°) to resolve mesoscale features and the complex current structure north of Iceland explicitly. The three sources of the Denmark Strait Overflow, the shelfbreak East Greenland Current (EGC), the separated EGC, and the North Icelandic Jet, have been analyzed using Eulerian and Lagrangian diagnostics. The shelfbreak EGC contributes the largest fraction in terms of volume and freshwater transport to the Denmark Strait Overflow and is the main driver of the overflow variability. The North Icelandic Jet contributes the densest water to the Denmark Strait Overflow and shows only small temporal transport variations. During summer, the net volume and freshwater transports to the south are reduced. On interannual time scales, these transports are highly correlated with the large-scale wind stress curl around Iceland and, to some extent, influenced by the North Atlantic Oscillation, with enhanced southward transports during positive phases. The Lagrangian trajectories support the existence of a hypothesized overturning loop along the shelfbreak north of Iceland, where water carried by the North Icelandic Irminger Current is transformed and feeds the North Icelandic Jet. Monitoring these two currents and the region north of the Iceland shelfbreak could provide the potential to track long-term changes in the Denmark Strait Overflow and thus also the AMOC.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-03
    Description: Between 1965 and 1990, the waters of the Nordic Seas and the subpolar basins of the North Atlantic Ocean freshened substantially1. The Arctic Ocean also became less saline over this time, as a consequence of increasing runoff1, 2, 3, 4, but it is not clear whether flow from the Arctic Ocean was the main source of the Nordic Seas salinity anomaly. As a region of deep-water formation, the Nordic Seas are central to the Atlantic meridional overturning circulation, but this process is inhibited if the surface salinity is too low2. Here we use the instrumental record of Nordic Seas hydrography, along with a global ocean–sea-ice model hindcast simulation, to identify the sources and magnitude of freshwater that has accumulated in the Nordic Seas since 1950. We find that the freshwater anomalies within the Nordic Seas can mostly be explained by less salt entering the southern part of the basin with the relatively saline Atlantic inflow, with seemingly little contribution from the Arctic Ocean. We conclude that hydrographic changes in the Nordic Seas are primarily related to changes in the Atlantic Ocean. We infer that if the Atlantic inflow and Nordic Seas both freshen similarly, this would render the Atlantic meridional overturning circulation relatively insensitive to Nordic Seas freshwater content.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-23
    Description: The Denmark Strait overflow water is the largest dense water plume from the Nordic seas to feed the lower limb of the Atlantic Meridional Overturning Circulation. Its primary source is commonly thought to be the East Greenland Current. However, the recent discovery of the North Icelandic Jet—a deep-reaching current that flows along the continental slope of Iceland—has called this view into question. Here we present high-resolution measurements of hydrography and velocity north of Iceland, taken during two shipboard surveys in October 2008 and August 2009. We find that the North Icelandic Jet advects overflow water into the Denmark Strait and constitutes a pathway that is distinct from the East Greenland Current. We estimate that the jet supplies about half of the total overflow transport, and infer that it is the primary source of the densest overflow water. Simulations with an ocean general circulation model suggest that the import of warm, salty water from the North Icelandic Irminger Current and water-mass transformation in the interior Iceland Sea are critical to the formation of the jet. We surmise that the timescale for the renewal of the deepest water in the meridional overturning cell, and its sensitivity to changes in climate, could be different than presently envisaged.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XV/2; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J008; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS55; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 873200 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XVII/1; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J011; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS59; PS59/042-3; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 403184 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XVI/1; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J009; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS57/108, PS59/042-2; PS57 ARKTIEF; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1483876 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XVI/1; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J010; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS57/109, PS59/037-1; PS57 ARKTIEF; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1833328 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XVII/1; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J012; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS59; PS59/041; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 817668 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XVII/1; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J013; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS59; PS59/037-2; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 2463680 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XIX/2; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J018; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS64; PS64/187-2; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 2356856 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...