GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-11-21
    Description: Between October 12 and November 5, 2015, the Cimar 21 “Ocean Islands” cruise was developed, organized and managed by the Navy's Hydrographic and Oceanographic Service (SHOA). This cruise covered the zonal transect in the subtropical region of the Eastern South Pacific Basin from Caldera (27.00°S; 70.88°W) to near Rapa Nui Island (27.04°S; 109.31°W). This region is characterized by presenting very contrasting trophic systems; from the coastal zone with eutrophic (rich in nutrients), colder and suboxic ([O2] 〈22 µM); to ultra-oligotrophic (with undetectable nutrient levels Raimbault et al., 2008), warmer and oxygenated waters that belong to South Pacific Subtropical Gyre, which has the clearest waters of the global ocean (Morel et al., 2010). In addition to trophic gradient, the Eastern South Pacific region presents an oxygen minimum zone (OMZ (Fuenzalida et al, 2009) with marked oxygen gradients where various biogeochemical processes can recycle greenhouse gases such as nitrous oxide (N2O) (Trocoso et al., 2018) and even methane (CH4) (Farías et al., 2021). From a total of 19 stations sampled, we present a set of data collected between 0 and 500 m depth using a CTD rosette for physicochemical variables such as temperature, salinity and oxygen (obtained from the CTD) and nutrients (nitrite, nitrate, phosphate, silicate) and greenhouse gases N2O and CH4 (obtained from Niskin bottles mounted in an oceanographic rosette). The gas samples were analyzed by gas chromatography through a gas chromatograph (Schimadzu 17A) using an electron capture detector at 350ºC and connected to an autoanalyzer, while the CH4 samples were analyzed manually in a chromatograph gas with flame ionization detector (Agilent Model 6850 GC-Fid) with a Restek RT QS-Bond column (30 meters 053 mm ID, 20 μm Film) with a temperature of 40ºC and a column flow of 4mL min-1. Meanwhile, nutrient samples with micromolar concentration (≥ 1 µM) were analyzed using standard colorimetric techniques (Grasshoff et al., 1983) in a Seal AA3 segmented flow auto-analyzer, whereas when the nutrient concentration was submicromolar (〈 1 µM) for samples of nitrite, nitrate, and phosphate in the gyre, the Seal AA3 segmented flow autoanalyzer was used coupled to two 50 cm Liquid waveridge capillary cells (LWCC, Type II), which allowed to increase the sensitivity of the detection spectrophotometric (Troncoso et al., 2018).
    Keywords: AGS 61 Cabo de Hornos; CIMAR_21; CIMAR-21_01_CTD; CIMAR-21_03_CTD; CIMAR-21_06_CTD; CIMAR-21_09_CTD; CIMAR-21_11_CTD; CIMAR-21_13_CTD; CIMAR-21_16_CTD; CIMAR-21_18_CTD; CIMAR-21_20_CTD; CIMAR-21_24_CTD; CIMAR-21_26_CTD; CIMAR-21_30_CTD; CIMAR-21_40_CTD; CIMAR-21_46_CTD; CIMAR-21_59_CTD; CIMAR-21_64_CTD; CIMAR-21_66_CTD; CIMAR-21_71_CTD; CIMAR-21_79_CTD; CTD/Rosette; CTD-RO; CTD with attached oxygen sensor; DATE/TIME; DEPTH, water; Eastern South Pacific ocean; Event label; Gas chromatograph, Agilent 6850, coupled with a flame ionization detector; Gas chromatograph (Shimadzu 17A) with an electron capture detector (ECD); Greenhouse gases; Instrument; LATITUDE; LONGITUDE; Methane; Nitrate; Nitrite; nitrous oxide; Nitrous oxide, dissolved; nutrients; Oxygen; Phosphate; Salinity; SEAL AA3 segmented flow autoanalyzer; SEAL AA3 segmented flow autoanalyzer coupled to two 50 cm Liquid waveridge capillary cells (LWCC, Type II); Silicic acid; South Pacific Ocean; Station label; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 2157 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen and nutrient concentrations to characterize the coastal (71-78 °W) and an oceanic (82-98 °W) water masses (SAAW-Subantarctic Surface Water; STW-Subtropical Water; ESSW-Equatorial Subsurface water; AAIW-Antarctic Intermediate Water; PDW-Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reyes-Macaya, D., Hoogakker, B., Martinez-Mendez, G., Llanillo, P. J., Grasse, P., Mohtadi, M., Mix, A., Leng, M. J., Struck, U., McCorkle, D. C., Troncoso, M., Gayo, E. M., Lange, C. B., Farias, L., Carhuapoma, W., Graco, M., Cornejo-D’Ottone, M., De Pol Holz, R., Fernandez, C., Narvaez, D., Vargas, C. A., García-Araya, F., Hebbeln, D. Isotopic characterization of water masses in the Southeast Pacific Region: paleoceanographic implications. Journal of Geophysical Research: Oceans, 127(1), (2022): e2021JC017525, https://doi.org/10.1029/2021JC017525.
    Description: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen, and nutrient concentrations to characterize the coastal (71°–78°W) and an oceanic (82°–98°W) water masses (SAAW—Subantarctic Surface Water; STW—Subtropical Water; ESSW—Equatorial Subsurface water; AAIW—Antarctic Intermediate Water; PDW—Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW, and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW, and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1,000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Description: R/V Sonne cruises (SO102, SO211 ad SO245) were financed by the German Federal Ministry of Education and Research projects #03G0102A, #03G0211A and #03G0245A. SO261 cruise was funded by the HADES-ERC Advanced Grant (“Benthic diagenesis and microbiology of hadal trenches” Grant agreement No. 669947) awarded to R. N. Glud (SDU, Denmark). SO245 cruise recived contributions from the Max Planck Society (Germany), the German State of Lower Saxony, the National Environmental Research Council of Great Britain and the Science Foundation of Ireland. R/V Meteor cruise M93 was financed by the Sonderforschungsbereich 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean” (www.sfb754.de), which is supported by the Deutsche Forschungsgemeinschaft. “Expedición TAITAO” was financed by the grant “Concurso Nacional de Asignación de Tiempo de Buque ASG-61 Cabo de Hornos” AUB180003, FONDECyT grants 11161091 (DN), 1180954 (CF), and the COPAS Sur-Austral Center (CONICYT PIA APOYO CCTE AFB170006). Sampling at Time-Series station 18 off Concepción during 2015 was funded by several FONDECYT/ANID grants from researchers at the Department of Oceanography and Research Line 5 of COPAS Sur-Austral (UdeC). ANID—Chile National Competition for ship time (AUB 150006/12806) financed the expedition LowpHOX organized by the Millennium Institute of Oceanography (IMO). The expedition Crio1218 was financed by the PPR 137 titled “Proyecto de Estudio Integrado del Afloramiento Costero Frente a Perú" and sponsored by IMARPE-Perú. Additional funding was provided by the ANID—Millennium Science Initiative Program—NCN19_153 (Millennium Nucleus UPWELL), ANID/FONDAP (CR)2 15110009 (LF and EMG), FONDECYT Grant 1210171 (CAV), ANID/FONDAP IDEAL 15150003 (CBL), and the Millennium Institute of Oceanography (IMO, ICN12_019). Dharma A. Reyes-Macaya was supported by Becas Chile (17342817-0), DAAD (57144001) and FARGO project (FAte of ocean oxygenation in a waRminG wOrld, UKRI).
    Keywords: Oxygen and deuterium stable isotopes in seawater ; Carbon stable isotopes in dissolved inorganic carbon ; Southeast Pacific ; Water mass distribution ; Paleoceanography proxies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-31
    Description: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen, and nutrient concentrations to characterize the coastal (71°–78°W) and an oceanic (82°–98°W) water masses (SAAW—Subantarctic Surface Water; STW—Subtropical Water; ESSW—Equatorial Subsurface water; AAIW—Antarctic Intermediate Water; PDW—Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW, and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW, and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1,000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...