GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-12
    Description: Samples in this dataset were collected at the long-term ecological research (LTER) site HAUSGARTEN in Fram Strait, and the central Arctic Ocean. On board, the samples were fixed with formalin in a final concentration of 2% for 10 – 12 hours, then filtered onto 0.2 µm polycarbonate Nucleopore Track-Etched filters, and stored at -20°C for further analysis. Cell abundances of the groups Alteromonas, Bacteroidia, Polaribacter, Gammaproteobacteria and the SAR11 clade were asses using CAtalyzed reporter deposition Fluorescence In Situ Hybridization (CARD-FISH) following the protocol established by (Pernthaler et al., 2002). The filters were evaluated microscopically under an automated microscope (Zeder et al., 2011). Cell enumeration was performed with the software Automated Cell Measuring and Enumeration Tool (ACMETool3, 2018-11-09; Zeder et al., 2011). Cells were counted as objects according to manually defined parameters separately for the DAPI and FISH channels.
    Keywords: 2-(4-Amidinophenyl)-1H-indole-6-carboxamidine; Alteromonas; Alteromonas, cells; ARK-XXX/1.2; Bacteroidetes; Bacteroidetes, cells; CARD-FISH; cell counts; CTD/Rosette with Underwater Vision Profiler; CTD-RO_UVP; DEPTH, ice/snow; DEPTH, water; EG_I; EG_IV; Event label; Fram Strait; Gammaproteobacteria; Gammaproteobacteria, cells; Giant box corer; GKG; ICE; Ice station; North Greenland Sea; Polaribacter; Polaribacter, cells; Polarstern; PS99/043-3; PS99/048-15; PS99/051-2; PS99/053-8; PS99.2; SAR11 clade; Type
    Type: Dataset
    Format: text/tab-separated-values, 48 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Bacterial biofilms provide cues for the settlement of marine invertebrates such as coral larvae, and are therefore important for the resilience and recovery of coral reefs. This study aimed to better understand how ocean acidification may affect the community composition and diversity of bacterial biofilms on surfaces under naturally reduced pH conditions. Settlement tiles were deployed at coral reefs in Papua New Guinea along pH gradients created by two CO2 seeps. Biofilms on upper and lower tiles surfaces were sampled 5 and 13 months after deployment. Automated Ribosomal Intergenic Spacer Analysis was used to characterize 240 separate bacterial communities, complemented by amplicon sequencing of the bacterial 16S rRNA gene of 16 samples. Bacterial biofilms consisted predominantly of Alpha-, Gamma-, and Delta-proteobacteria, as well as Cyanobacteria, Flavobacteriia, and Cytophagia, whereas taxa that induce settlement of invertebrate larvae only accounted for a small fraction of the community. Bacterial biofilm composition was heterogeneous, with on average only ∼25% of operational taxonomic units shared between samples. Among the observed environmental parameters, pH was only weakly related to community composition (R2 ∼ 1%), and was unrelated to community richness and evenness. In contrast, biofilms strongly differed between upper and lower tile surfaces (contrasting in light exposure and grazing intensity). There also appeared to be a strong interaction between bacterial biofilm composition and the macroscopic components of the tile community. Our results suggest that on mature settlement surfaces in situ, pH does not have a strong impact on the composition of bacterial biofilms. Other abiotic and biotic factors such as light exposure and interactions with other organisms may be more important in shaping bacterial biofilms on mature surfaces than changes in seawater pH.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-31
    Description: To understand how ocean acidification (OA) influences sediment microbial communities, naturally CO2-rich sites are increasingly being used as OA analogues. However, the characterization of these naturally CO2-rich sites is often limited to OA-related variables, neglecting additional environmental variables that may confound OA effects. Here, we used an extensive array of sediment and bottom water parameters to evaluate pH effects on sediment microbial communities at hydrothermal CO2seeps in Papua New Guinea. The geochemical composition of the sediment pore water showed variations in the hydrothermal signature at seep sites with comparable pH, allowing the identification of sites that may better represent future OA scenarios. At these sites, we detected a 60% shift in the microbial community composition compared with reference sites, mostly related to increases inChloroflexisequences. pH was among the factors significantly, yet not mainly, explaining changes in microbial community composition. pH variation may therefore often not be the primary cause of microbial changes when sampling is done along complex environmental gradients. Thus, we recommend an ecosystem approach when assessing OA effects on sediment microbial communities under natural conditions. This will enable a more reliable quantification of OA effects via a reduction of potential confounding effects
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-23
    Description: Two-component signal transduction constitutes the predominant strategy used by bacteria to adapt to fluctuating environments. The KdpD/KdpE system is one of the most widespread, and is crucial for K+ homeostasis. In Escherichia coli, the histidine kinase KdpD senses K+ availability, whereas the response regulator KdpE activates synthesis of the high-affinity K+ uptake system KdpFABC. Here we show that, in the absence of KdpD, kdpFABC expression can be activated via phosphorylation of KdpE by the histidine kinase PhoR. PhoR and its cognate response regulator PhoB comprise a phosphate-responsive two-component system, which senses phosphate limitation indirectly through the phosphate transporter PstCAB and its accessory protein PhoU. In vivo two-hybrid interaction studies based on the bacterial adenylate cyclase reveal pairwise interactions between KdpD, PhoR, and PhoU. Finally, we demonstrate that cross-regulation between the kdpFABC and pstSCAB operons occurs in both directions under simultaneous K+ and phosphate limitation, both in vitro and in vivo. This study for the first time demonstrates direct coupling between intracellular K+ and phosphate homeostasis and provides a mechanism for fine-tuning of the balance between positively and negatively charged ions in the bacterial cell.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: The sulfate‐dependent, anaerobic oxidation of methane (AOM) is an important sink for methane in marine environments. It is carried out between anaerobic methanotrophic archaea (ANME) and sulfate‐reducing bacteria (SRB) living in syntrophic partnership. In this study, we compared the genomes, gene expression patterns and ultrastructures of three phylogenetically different microbial consortia found in hydrocarbon‐rich environments under different temperature regimes: ANME‐1a/HotSeep‐1 (60°C), ANME‐1a/Seep‐SRB2 (37°C) and ANME‐2c/Seep‐SRB2 (20°C). All three ANME encode a reverse methanogenesis pathway: ANME‐2c encodes all enzymes, while ANME‐1a lacks the gene for N5,N10‐methylene tetrahydromethanopterin reductase (mer) and encodes a methylenetetrahydrofolate reductase (Met). The bacterial partners contain the genes encoding the canonical dissimilatory sulfate reduction pathway. During AOM, all three consortia types highly expressed genes encoding for the formation of flagella or type IV pili and/or c‐type cytochromes, some predicted to be extracellular. ANME‐2c expressed potentially extracellular cytochromes with up to 32 hemes, whereas ANME‐1a and SRB expressed less complex cytochromes (≤ 8 and ≤ 12 heme respectively). The intercellular space of all consortia showed nanowire‐like structures and heme‐rich areas. These features are proposed to enable interspecies electron exchange, hence suggesting that direct electron transfer is a common mechanism to sulfate‐dependent AOM, and that both partners synthesize molecules to enable it.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-11
    Description: Coastal oceans receive large amounts of anthropogenic fixed nitrogen (N), most of which is denitrified in the sediment before reaching the open ocean. Sandy sediments, which are common in coastal regions, seem to play an important role in catalysing this N‐loss. Permeable sediments are characterized by advective porewater transport, which supplies high fluxes of organic matter into the sediment, but also leads to fluctuations in oxygen and nitrate concentrations. Little is known about how the denitrifying communities in these sediments are adapted to such fluctuations. Our combined results indicate that denitrification in eutrophied sandy sediments from the world's largest tidal flat system, the Wadden Sea, is carried out by different groups of microorganisms. This segregation leads to the formation of N2O which is advectively transported to the overlying waters and thereby emitted to the atmosphere. At the same time, the production of N2O within the sediment supports a subset of Flavobacteriia which appear to be specialized on N2O reduction. If the mechanisms shown here are active in other coastal zones, then denitrification in eutrophied sandy sediments may substantially contribute to current marine N2O emissions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-14
    Description: Genetic diversity of closely related free-living microorganisms is widespread and underpins ecosystem functioning, but most evolutionary theories predict that it destabilizes intimate mutualisms. Accordingly, strain diversity is assumed to be highly restricted in intracellular bacteria associated with animals. Here, we sequenced metagenomes and metatranscriptomes of 18 Bathymodiolus mussel individuals from four species, covering their known distribution range at deep-sea hydrothermal vents in the Atlantic. We show that as many as 16 strains of intracellular, sulfur-oxidizing symbionts coexist in individual Bathymodiolus mussels. Co-occurring symbiont strains differed extensively in key functions, such as the use of energy and nutrient sources, electron acceptors and viral defence mechanisms. Most strain-specific genes were expressed, highlighting their potential to affect fitness. We show that fine-scale diversity is pervasive in Bathymodiolus sulfur-oxidizing symbionts, and hypothesize that it may be widespread in low-cost symbioses where the environment, rather than the host, feeds the symbionts.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-26
    Description: Crude oil and gases in the seabed provide an important energy source for subsurface microorganisms. We investigated the role of archaea in the anaerobic degradation of non-methane alkanes in deep-sea oil seeps from the Gulf of Mexico. We identified microscopically the ethane and short-chain alkane oxidizers “Candidatus Argoarchaeum” and “Candidatus Syntrophoarchaeum” forming consortia with bacteria. Moreover, we found that the sediments contain large numbers of cells from the archaeal clade “Candidatus Methanoliparia,” which was previously proposed to perform methanogenic alkane degradation. “Ca. Methanoliparia” occurred abundantly as single cells attached to oil droplets in sediments without apparent bacterial or archaeal partners. Metagenome-assembled genomes of “Ca. Methanoliparia” encode a complete methanogenesis pathway including a canonical methyl-coenzyme M reductase (MCR) but also a highly divergent MCR related to those of alkane-degrading archaea and pathways for the oxidation of long-chain alkyl units. Its metabolic genomic potential and its global detection in hydrocarbon reservoirs suggest that “Ca. Methanoliparia” is an important methanogenic alkane degrader in subsurface environments, producing methane by alkane disproportionation as a single organism.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-14
    Description: The South Pacific Gyre (SPG) covers 10% of the ocean’s surface and is often regarded as a marine biological desert. To gain an on-site overview of the remote, ultraoligotrophic microbial community of the SPG, we developed a novel onboard analysis pipeline, which combines next-generation sequencing with fluorescence in situ hybridization and automated cell enumeration. We tested the pipeline during the SO-245 “UltraPac” cruise from Chile to New Zealand and found that the overall microbial community of the SPG was highly similar to those of other oceanic gyres. The SPG was dominated by 20 major bacterial clades, including SAR11, SAR116, the AEGEAN-169 marine group, SAR86, Prochlorococcus, SAR324, SAR406, and SAR202. Most of the bacterial clades showed a strong vertical (20 m to 5,000 m), but only a weak longitudinal (80°W to 160°W), distribution pattern. Surprisingly, in the central gyre, Prochlorococcus, the dominant photosynthetic organism, had only low cellular abundances in the upper waters (20 to 80 m) and was more frequent around the 1% irradiance zone (100 to 150 m). Instead, the surface waters of the central gyre were dominated by the SAR11, SAR86, and SAR116 clades known to harbor light-driven proton pumps. The alphaproteobacterial AEGEAN-169 marine group was particularly abundant in the surface waters of the central gyre, indicating a potentially interesting adaptation to ultraoligotrophic waters and high solar irradiance. In the future, the newly developed community analysis pipeline will allow for on-site insights into a microbial community within 35 h of sampling, which will permit more targeted sampling efforts and hypothesis-driven research.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3Symposium on High throughput methods for application in marine biodiversity time series, Hannover, Germany, 2017-10-11-2017-10-13
    Publication Date: 2017-11-26
    Description: The vast majority of deep-sea ecosystems are sustained by exported organic material from the productive, sunlit surface ocean. Bacteria dominate benthic communities both in biomass and abundance, and have been recognized as the key players in the remineralization of organic material. Since most sediment bacteria remain however uncultivated and represent unknown taxa, we have very limited knowledge of their metabolic capabilities and enzymatic machinery. Here we studied deep-sea surface sediments along a seafloor depth gradient from 1200 m to 5500 m at the Arctic long-term ecological research station HAUSGARTEN. We applied Illumina 16S rRNA gene surveys based on DNA and cDNA, as well as metagenomic and -transcriptomic sequencing to elucidate total and active bacterial community composition and gain insight into the carbohydrate processing and uptake capabilities of deep-sea benthic bacteria. We identified specific taxa of interest and quantified their cellular abundance using CAtalyzed Reporter Deposition–Fluorescence In Situ Hybridization. Results from the different molecular approaches were in good agreement and suggested similar community structures with the same dominant members. Interestingly, typically predominant sediment taxa, i.e. the JTB255 marine group, the Sh765B.TzT29 group or the OM1 clade, were underrepresented in the active part of the community, while other usually low-abundant taxa, i.e. Flavobacteriia and the SAR202 clade, were overrepresented. At low taxonomic resolution, communities along the slope were similar, yet showed high turnover at species level. Although, the repertoire of carbohydrate-active enzymes (e.g. polysaccharide hydrolases) appeared unchanging along the depth gradient, the relative contribution of distinct enzyme-coding genes varied. Specific glycoside hydrolases involved in polysaccharide degradation of algae material (e.g. for laminarin; xylan) had higher counts at shallow depth, while others responsible for the breakdown of bacterial cell walls (e.g. for components of peptidoglycan) were more strongly represented at deep stations. Our findings indicate an adaptation of the communities to differences in organic matter quality.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...