GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Geochimica et Cosmochimica Acta, PERGAMON-ELSEVIER SCIENCE LTD, 260, pp. 49-61, ISSN: 0016-7037
    Publication Date: 2019-07-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-26
    Description: We propose an alternative scheme for the use of 224Ra/228Th disequilibria to investigate carbon and nutrient export from a permeable sandy seabed. Sediment profiles of dissolved 224Ra, total 224Ra and 228Th were determined at two different intertidal sand systems - an intertidal sandy beach near Weitou Bay in Fujian (China), and a tidal sand flat in the Wadden Sea near Cuxhaven (Germany). Dramatic deficit of total 224Ra relative to 228Th was identified in the upper 20 or 30 cm sand layer over the sand systems. We construct a simple two-dimensional advective cycling model to simulate interfacial fluid transport in a sand system that is subject to periodic tidal inundation and swash actions. Based on the 224Ra/228Th disequilibria in the sediment, the model gives estimates of 20.3, 9.1, and 1.9 L m−2 h−1 for water exchange flux at the high tide, mid-tide, and low tide position over the sandy beach at Weitou Bay, respectively. In comparison, the model provides an estimate of 7.2 L m−2 h−1 for water exchange flux at the tidal sand flat in the Wadden Sea. The production of dissolved inorganic carbon (DIC) in porewater is the rate-limiting step for DIC export from the sandy beach into the sea, and can be reasonably simulated as a first-order kinetic reaction. The pattern of interfacial fluid transport over the beach facilitates a horizontal zonation of redox condition in the sediment, which evolves progressively from a fully oxic state at the high tide position to a suboxic state at the low tide position. There is clear evidence of nitrogen loss via denitrification in the suboxic status, and we estimate a nitrogen removal rate of 3.3 mmolN m−2 d−1 at this site. For the two intertidal sand systems, DIC export fluxes range from 20.1 to 89.4 mmolC m−2 d−1, comparable in magnitude to fluxes determined in organic rich estuarine sediments. In the meantime, export fluxes of dissolved inorganic nitrogen (DIN) change from 0.8 to 18.6 mmolN m−2 d−1. Overall, this study suggests that the role of sandy sediments in the biogeochemical cycling of carbon and nutrients needs to be revisited.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-18
    Description: Periodontitis, a common chronic inflammatory disease of the periodontium, is caused by dental plaque formation induced by microorganisms. Recent studies have demonstrated that lncRNAs play a critical role in the regulation of gene expression and in the pathogenesis of diseases. To demonstrate that periodontitis is associated with lncRNAs, microarray analysis was used to detect differently expressed lncRNAs in chronic periodontitis and adjacent normal tissues. The results of some differently expressed lncRNAs were further confirmed using real-time PCR. A total of 8925 differentially expressed lncRNAs were detected, including 4313 upregulated lncRNAs and 4612 downregulated lncRNAs. Further lncRNA subgroup analysis showed there were 589 enhancer-like lncRNAs, 238 homeobox (HOX) cluster lncRNAs, and 1218 Rinn's lincRNAs, of which 656 lincRNAs were upregulated and 562 lincRNAs were downregulated. Therefore, we confirmed that lncRNAs were differently expressed in chronic periodontitis tissues compared with adjacent normal tissues, indicating that lncRNAs may exert partial or key roles in periodontitis pathogenesis and development. Taken together, this study may provide potential targets for future treatment of periodontitis and novel diagnostic biomarkers for periodontitis. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...