GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Isotope geology ; Geochemistry ; Isotopes ; Isotopengeochemie
    Type of Medium: Book
    Pages: xvi, 196 Seiten , Diagramme
    ISBN: 9781107039582
    DDC: 551.9
    RVK:
    RVK:
    Language: English
    Note: Includes bibliographical references and index
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 420 (2002), S. 304-307 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The compositional differences between mid-ocean-ridge and ocean-island basalts place important constraints on the form of mantle convection. Also, it is thought that the scale and nature of heterogeneities within plumes and the degree to which heterogeneous material endures within the mantle ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Evidence for the deep recycling of surficial materials through the Earth’s mantle and their antiquity has long been sought to understand the role of subducting plates and plumes in mantle convection. Radiogenic isotope evidence for such recycling remains equivocal because the age and ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Description: The Azores islands in the central North-Atlantic originate from a regional melting anomaly, probably created by melting hot, unusually hydrous and geochemically enriched mantle. Here, we present Hf, Pb and Os isotopic data in geochemically well-characterised primitive lavas from the islands Flores and Corvo that are located west of the Mid-Atlantic Ridge (MAR), as well as submarine samples from a subsided island west of Flores and from Deep Sea Drilling Project (DSDP) holes drilled in the western part of the Azores platform and beyond. These are compared to existing data from the Azores islands east of the MAR. The geodynamic origin of the two islands west of the ridge axis and furthest from the inferred plume centre in the central part of the plateau is enigmatic. The new data constrain the source compositions of the Flores and Corvo lavas and show that the western and eastern Azores mantle is isotopically similar, with the exception of an enriched component found exclusively on eastern São Miguel. Trace element ratios involving high field strength elements (HFSE) are distinctly different in the western islands (e.g. twofold higher Nb/Zr) compared to any of the islands east of the MAR. A similar signature is observed in MAR basalts to the south of the Azores platform and inferred to originate from (auto-) metasomatic enrichment of the sub-ridge mantle (Gale et al., 2011, 2013). In a similar fashion, low degree melts from an enriched source component may metasomatise the ambient plume mantle underneath the western Azores islands. Melting such a modified plume mantle can explain the chemical differences between lavas from the western and eastern Azores islands without the need for additional plume components. Recent re-enrichment and intra melting column modification of the upwelling mantle can cause local to regional scale geochemical differences in mantle-derived melts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-11
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Stable barium (Ba) isotopes are emerging as tracers for the recycling of crustal material into the mantle. Small but significant Ba isotope variations have been found in global MORB (δ138/134Ba values of −0.04‰ to 0.15‰), but the processes causing these Ba isotope variations remain poorly understood. In addition, uncertainties still exist in the estimate of the Ba isotope composition of the depleted upper mantle. Here, we present a systematic study of Ba isotopes for well-characterized MORB glass samples from the South Mid-Atlantic Ridge (SMAR) between 5 and 11°S, which span a wide range of radiogenic isotope ratios and trace element contents. Our results show that the northernmost segment A0 basalts with highly depleted radiogenic isotope compositions have δ138/134Ba values ranging from −0.02 to 0.05‰. In comparison, the δ138/134Ba values of the isotopically enriched basalts from the A1-A4 segments vary from 0.02 to 0.11‰. Thus, while small, the enriched components involved can be observed to modify the Ba isotope composition of the mantle source beneath A1-A4 segments. Combining our new measurements with literature data, this study places new constraints on the Ba isotope composition of the depleted upper mantle, as well as the origin of Ba isotope heterogeneity in MORB. The Ba isotope composition of the depleted upper mantle in the absence of recycled components is estimated to have a δ138/134Ba value of 0.03 to 0.05‰, which can be adopted as the baseline for using Ba isotope ratios as a tracer of mass transfer processes between the crust and mantle. In comparison, global MORB have δ138/134Ba values ranging from −0.04‰ to 0.15‰. No global correlation is observed between Ba isotope ratios and geochemical parameters that record mantle enrichment, indicating that the Ba isotope variations in MORB cannot be simply ascribed to the addition of some single component, such as sediment. Models for melting and mixing between recycled materials and depleted mantle suggest that the variable Ba isotope compositions of the enriched MORB require a contribution from recycled altered oceanic crust and crustal sedimentary materials. Therefore, these recycled components both play important roles in the chemical budget of the convecting upper mantle, especially for incompatible elements such as Ba.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Lava samples from the Christmas Island Seamount Province (CHRISP) record an extreme range in enriched mantle (EM) type Sr-Nd-Pb-Hf isotope signatures. Here we report osmium isotope data obtained on four samples from the youngest, Pliocene petit-spot phase (Upper Volcanic Series, UVS; ~4.4 Ma), and four samples from the earlier, Eocene (Lower Volcanic Series, LVS; ~40 Ma) shield building phase of Christmas Island. Osmium concentrations are low (5–82 ppt) with initial Os isotopic values (187Os/188Osi) ranging from (0.1230–0.1679). Along with additional new geochemical data (major and trace elements, Sr-Nd-Pb isotopes, olivine δ18O values), we demonstrate the following: (1) The UVS is consistent with melting of shallow Indian mid-ocean ridge basalt (MORB) mantle enriched with both lower continental crust (LCC) and subcontinental lithospheric mantle (SCLM) components; and (2) The LVS is consistent with recycling of SCLM components related to Gondwana break-up. The SCLM component has FOZO or HIMU like characteristics. One of the LVS samples has less radiogenic Os (γOs –3.4) and provides evidence for the presence of ancient SCLM in the source. The geochemistry of the Christmas Island lava series supports the idea that continental breakup causes shallow recycling of lithospheric and lower crustal components into the ambient MORB mantle.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Falloon, T., Hoernle, K., Schaefer, B., Bindeman, I., Hart, S., Garbe-Schonberg, D., & Duncan, R. Petrogenesis of lava from Christmas Island, Northeast Indian Ocean: implications for the nature of recycled components in non-plume intraplate settings. Geosciences, 12(3), (2022): 118, https://doi.org/10.3390/geosciences12030118.
    Description: Lava samples from the Christmas Island Seamount Province (CHRISP) record an extreme range in enriched mantle (EM) type Sr-Nd-Pb-Hf isotope signatures. Here we report osmium isotope data obtained on four samples from the youngest, Pliocene petit-spot phase (Upper Volcanic Series, UVS; ~4.4 Ma), and four samples from the earlier, Eocene (Lower Volcanic Series, LVS; ~40 Ma) shield building phase of Christmas Island. Osmium concentrations are low (5–82 ppt) with initial Os isotopic values (187Os/188Osi) ranging from (0.1230–0.1679). Along with additional new geochemical data (major and trace elements, Sr-Nd-Pb isotopes, olivine δ18O values), we demonstrate the following: (1) The UVS is consistent with melting of shallow Indian mid-ocean ridge basalt (MORB) mantle enriched with both lower continental crust (LCC) and subcontinental lithospheric mantle (SCLM) components; and (2) The LVS is consistent with recycling of SCLM components related to Gondwana break-up. The SCLM component has FOZO or HIMU like characteristics. One of the LVS samples has less radiogenic Os (γOs –3.4) and provides evidence for the presence of ancient SCLM in the source. The geochemistry of the Christmas Island lava series supports the idea that continental breakup causes shallow recycling of lithospheric and lower crustal components into the ambient MORB mantle.
    Description: This research received no external funding.
    Keywords: Osmium isotopes ; Petit-spot volcanism ; Olivine oxygen isotopes ; Intraplate volcanism ; Christmas Island ; Indian Ocean ; CHRISP ; Crust recycling ; Lithosphere recycling ; DUPAL
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...