GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Online Resource
    Online Resource
    [Bremerhaven] : [Alfred-Wegener-Institut für Polar- und Meeresforschung]
    Keywords: Forschungsbericht ; Polargebiete ; Satellitenfernerkundung ; Radarfernerkundung ; Satellitenaltimetrie
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (74 Seiten, 23,4 MB) , Diagramme, Karten
    Language: German
    Note: Förderkennzeichen BMBF 50EE1331. - Verbund-Nummer 01150613 , Paralleltitel dem englischen Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassung: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: In September 2019, the research icebreaker Polarstern started the largest multidisciplinary Arctic expedition to date, the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) drift experiment. Being moored to an ice floe for a whole year, thus including the winter season, the declared goal of the expedition is to better understand and quantify relevant processes within the atmosphere–ice–ocean system that impact the sea ice mass and energy budget, ultimately leading to much improved climate models. Satellite observations, atmospheric reanalysis data, and readings from a nearby meteorological station indicate that the interplay of high ice export in late winter and exceptionally high air temperatures resulted in the longest ice-free summer period since reliable instrumental records began. We show, using a Lagrangian tracking tool and a thermodynamic sea ice model, that the MOSAiC floe carrying the Central Observatory (CO) formed in a polynya event north of the New Siberian Islands at the beginning of December 2018. The results further indicate that sea ice in the vicinity of the CO (〈40 km distance) was younger and 36 % thinner than the surrounding ice with potential consequences for ice dynamics and momentum and heat transfer between ocean and atmosphere. Sea ice surveys carried out on various reference floes in autumn 2019 verify this gradient in ice thickness, and sediments discovered in ice cores (so-called dirty sea ice) around the CO confirm contact with shallow waters in an early phase of growth, consistent with the tracking analysis. Since less and less ice from the Siberian shelves survives its first summer (Krumpen et al., 2019), the MOSAiC experiment provides the unique opportunity to study the role of sea ice as a transport medium for gases, macronutrients, iron, organic matter, sediments and pollutants from shelf areas to the central Arctic Ocean and beyond. Compared to data for the past 26 years, the sea ice encountered at the end of September 2019 can already be classified as exceptionally thin, and further predicted changes towards a seasonally ice-free ocean will likely cut off the long-range transport of ice-rafted materials by the Transpolar Drift in the future. A reduced long-range transport of sea ice would have strong implications for the redistribution of biogeochemical matter in the central Arctic Ocean, with consequences for the balance of climate-relevant trace gases, primary production and biodiversity in the Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: The gridded sea ice thickness (SIT) climate data record (CDR) produced by the European Space Agency (ESA) Sea Ice Climate Change Initiative Phase 2 (CCI-2) is the longest available, Arctic-wide SIT record covering the period from 2002 to 2017. SIT data are based on radar altimetry measurements of sea ice freeboard from the Environmental Satellite (ENVISAT) and CryoSat-2 (CS2). The CCI-2 SIT has previously been validated with in situ observations from drilling, airborne remote sensing, electromagnetic (EM) measurements and upward-looking sonars (ULSs) from multiple ice-covered regions of the Arctic. Here we present the Laptev Sea CCI-2 SIT record from 2002 to 2017 and use newly acquired ULS and upward-looking acoustic Doppler current profiler (ADCP) sea ice draft (VAL) data for validation of the gridded CCI-2 and additional satellite SIT products. The ULS and ADCP time series provide the first long-term satellite SIT validation data set from this important source region of sea ice in the Transpolar Drift. The comparison of VAL sea ice draft data with gridded monthly mean and orbit trajectory CCI-2 data, as well as merged CryoSat-2–SMOS (CS2SMOS) sea ice draft, shows that the agreement between the satellite and VAL draft data strongly depends on the thickness of the sampled ice. Rather than providing mean sea ice draft, the considered satellite products provide modal sea ice draft in the Laptev Sea. Ice drafts thinner than 0.7 m are overestimated, while drafts thicker than approximately 1.3 m are increasingly underestimated by all satellite products investigated for this study. The tendency of the satellite SIT products to better agree with modal sea ice draft and underestimate thicker ice needs to be considered for all past and future investigations into SIT changes in this important region. The performance of the CCI-2 SIT CDR is considered stable over time; however, observed trends in gridded CCI-2 SIT are strongly influenced by the uncertainties of ENVISAT and CS2 and the comparably short investigation period.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-17
    Description: The significant loss of Arctic sea ice during the last decades shows the sensitivity of the sea ice system to changes in the global climate. To distinguish between natural variability and the impact of global warming, an understanding of processes and feedbacks is necessary and for that, consistent and comprehensive measurements of the most important sea ice properties are required. While sea ice concentration is observed routinely year-round since the beginning of the satellite era, strategies to investigate the sea ice thickness distribution, crucially needed for an investigation of ice mass changes, has only recently been developed. To contribute to the interpretation of the remotely sensed sea ice thickness products, which are mainly based on freeboard determination from altimeter measurements, available airborne sea ice thickness and freeboard data have been collected within the Sea Ice Downstream Services for Arctic and Antarctic Users and Stakeholders (SIDARUS) EU-Project, and have been analyzed with respect to their usability for validation of the large scale satellite products. Thus, statistical parameters like the variability of freeboards within the common footprint areas of satellites have been analyzed from measurements made during the PAMARCMIP 2011 campaign to determine the differences between point measurements and areal averages. Also, impacts on the deviated sea ice thicknesses have been studied by means of a cross validation of freeboard-based sea ice thicknesses with airborne thickness measurements with electromagnetic induction sounding. Finally, since during the PAMARCMIP campaign few flights were performed in conjunction with CryoSat-2 overpasses, the airborne-based freeboards can finally be used for a comparison with satellite-derived data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-11-14
    Description: Exploiting the complementary character of CryoSat-2 and Soil Moisture and Ocean Salinity satellite sea ice thickness products, daily Arctic sea ice thickness estimates from October 2010 to December 2016 are generated by an Arctic regional ice-ocean model with satellite thickness assimilated. The assimilation is performed by a Local Error Subspace Transform Kalman filter coded in the Parallel Data Assimilation Framework. The new estimates can be generally thought of as combined model and satellite thickness (CMST). It combines the skill of satellite thickness assimilation in the freezing season with the model skill in the melting season, when neither CryoSat-2 nor Soil Moisture and Ocean Salinity sea ice thickness is available. Comparisons with in situ observations from the Beaufort Gyre Exploration Project, Ice Mass Balance Buoys, and the NASA Operation IceBridge demonstrate that CMST reproduces most of the observed temporal and spatial variations. Results also show that CMST compares favorably to the Pan-Arctic Ice-Ocean Modeling and Assimilation System product and even appears to correct known thickness biases in the Pan-Arctic Ice-Ocean Modeling and Assimilation System. Due to imperfect parameterizations in the sea ice model and satellite thickness retrievals, CMST does not reproduce the heavily deformed and ridged sea ice along the northern coast of the Canadian Arctic Archipelago and Greenland. With the new Arctic sea ice thickness estimates sea ice volume changes in recent years can be further assessed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Alfred Wegener Institute
    In:  EPIC3Alfred Wegener Institute
    Publication Date: 2019-05-07
    Description: This document provides an overview of all aspects of the CryoSat-2 Arctic sea-ice thickness data product (version 2.1) generated at the Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI). It contains information on the 1) Primary and auxiliary data sets used in the processing, 2) Description of the algorithm used deriving geophysical information along orbit segments and on space-time grids 3) Technical specifications of the product files 4) Data access 5) Known Issues of the data record
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-12-06
    Description: Sea ice volume export is affecting the Arctic ice mass balance, and certainly the multiyear ice volume variability. Climate relevance is also given by the significant fresh water input into the North Atlantic, affecting the thermohaline circulation. The Fram Strait represents the main sea ice export gate in the Arctic. Here, we present the first estimates of winter sea ice volume export through the Fram Strait using CryoSat-2 sea ice thickness retrievals and three different drift products for the years 2010 to 2017. The export rates vary between 20 and 550 km3/month. We find that sea ice drift is the main driver of seasonal and interannual ice volume export variability. Moreover, 79% of the interannual variability can be explained by the relation to the North Atlantic Oscillation index (NAO). The seasonal trend, however, is driven by the mean ice thickness, associated with the thermodynamic ice growth, which is typically peaking in March. Considering Arctic winter multiyear ice volume changes, 50% of the seasonal variability can be explained by the ice volume export through the Fram Strait.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC325 Years of Progress in Radar Altimetry Symposium, Ponta Delgada, Portugal, 2018-09-2018-09
    Publication Date: 2018-12-06
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
    In:  EPIC3Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 85(2), pp. 143-155, ISSN: 00322490
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Polarforschung" , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...