GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2024-04-27
    Description: Discrete measurements of particulate organic carbon (POC) concentration and flux were made on the RRS Discovery during COMICS cruise DY086 at site P3 in the South Atlantic from November to December, 2017 (Giering et al. 2023). Data is from a variety of equipment including marine snow catchers, neutrally-buoyant sediment traps (PELAGRA) and a stand-alone pump system. Marine snow catchers settled on-deck for 2 hours. Slow sinking particles were collected from the base and fast sinking particles were collected from the tray. These data were used along with bottle POC data to calibrate glider backscatter data from the GOCART project.
    Keywords: 74EQ20171115; biological carbon pump; Carbon, organic, particulate; Carbon, organic, particulate, flux; COMICS; Controls over Ocean Mesopelagic Interior Carbon Storage; Date/Time of event; DEPTH, water; Discovery (2013); DY086; DY086_MSC006; DY086_MSC007; DY086_MSC010; DY086_MSC015; DY086_MSC016; DY086_MSC019; DY086_MSC020; DY086_MSC022; DY086_MSC027; DY086_MSC028; DY086_MSC029; DY086_MSC034; DY086_MSC035; DY086_MSC036; DY086_MSC037; DY086_MSC038; DY086_MSC039; DY086_MSC040; DY086_MSC061; DY086_MSC062; DY086_MSC063; DY086_MSC067; DY086_MSC068; DY086_MSC069; DY086_MSC071; DY086_MSC072; DY086_MSC076; DY086_MSC077; DY086_MSC078; DY086_MSC079; DY086_MSC081; DY086_MSC082; DY086_MSC083; DY086_MSC084; DY086_MSC093; DY086_MSC094; DY086_MSC099; DY086_MSC100; DY086_MSC101; DY086_MSC103; DY086_MSC104; DY086_MSC105; DY086_MSC106; DY086_MSC111; DY086_MSC112; DY086_MSC113; DY086_MSC114; DY086_MSC125; DY086_MSC126; DY086_MSC127; DY086_MSC128; DY086_Pelagra006; DY086_Pelagra007; DY086_Pelagra008; DY086_Pelagra009; DY086_Pelagra010; DY086_Pelagra011; DY086_Pelagra012; DY086_Pelagra013; DY086_Pelagra014; DY086_Pelagra015; DY086_Pelagra016; DY086_Pelagra017; DY086_Pelagra018; DY086_Pelagra019; DY086_Pelagra020; DY086_Pelagra021; DY086_Pelagra022; DY086_Pelagra023; DY086_Pelagra024; DY086_Pelagra025; DY086_Pelagra026; DY086_Pelagra027; DY086_Pelagra028; DY086_Pelagra029; DY086_Pelagra030; DY086_Pelagra031; DY086_Pelagra032; DY086_Pelagra033; DY086_Pelagra034; DY086_Pelagra035; DY086_Pelagra036; DY086_Pelagra037; DY086_Pelagra038; DY086_SAPS001; DY086_SAPS002; DY086_SAPS003; DY086_SAPS004; DY086_SAPS005; Event label; fluxes; Latitude of event; Longitude of event; marine biogeochemistry; Marine snow catcher; MSC; PELAGRA; SAPS; Site; Stand-alone pumps; SUMMER; Sustainable Management of Mesopelagic Resources; Trap, sediment, drifting
    Type: Dataset
    Format: text/tab-separated-values, 366 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-14
    Description: Physical, chemical and biogeochemical measurements derived from CTD-rosette deployments during three visits to site P3 (November to December, 2017) in the South Atlantic. Measurements were made during COMICS cruise DY086 on the RRS Discovery using a trace metal free Titanium Rosette (events 4, 7, 15, 19, 24, 26, 29) and a Stainless Steel Rosette (all other events). Physical parameters include temperature, salinity, density, photosynthetically active radiation and turbulence; chemical parameters include dissolved oxygen, dissolved oxygen saturation, nitrate, phosphate and silicate; biogeochemical parameters include turbidity, beam transmittance, beam attenuation, fluorescence, particulate organic carbon (POC), dissolved organic carbon (DOC), chlorophyll-a, net primary productivity (NPP), ambient leucine assimilation and bacterial cell count. To determine turbulence, a downward facing lowered acoustic doppler current profiler (LADCP, Teledyne Workhorse Monitor 300 kHz ADCP) was attached to the CTD frame. Shear and strain, which are obtained from velocity and density measurements, were used to estimate the dissipation rate of turbulent kinetic energy and the diapycnal eddy diffusivity from a fine-scale parameterisation. Estimates are calculated by parameterising internal wave-wave interactions and assuming that wave breaking modulates turbulent mixing. A detailed description of the method for calculating diffusivity from LADCP and CTD can be found in Kunze et al. (2006). Two datasets with different vertical resolutions were produced: one in which the shear is integrated from 150 to 300 m and the strain over 20-150 m, and one in which the shear is integrated from 70 to 200 m and the strain over 30-200 m. Nutrients (nitrate, phosphate, silicate) were determined via colourimetric analysis (see cruise report, Giering and Sanders, 2019), POC was determined as described in Giering et al. (2023), DOC and DOC flux were determined as described in Lovecchio et al. (2023), NPP was determined as described in Poulton et al. (2019), and ambient leucine assimilation and bacterial cell count were determined as described in Rayne et al. (2024). Bacterial abundance and leucine assimilation were made from bottle samples of six CTD casts of the stainless-steel rosette. Water was collected at six depths (6 m, deep-chlorophyll maximum, mixed layer depth + 10, 100, 250 and 500 m). Acid-cleaned HDPE carboys and tubing were used for sampling. Samples were then stored in the dark and at in-situ temperature prior to on-board laboratory sample preparation or analysis. Flow cytometry was used to measure bacterial abundance. Room temperature paraformaldehyde was used to fix 1.6 ml samples for 30 minutes. Then, using liquid nitrogen, the samples were flash frozen and stored at -80°C. Samples were then defrosted before being stained using SYBR Green I and run through the flow cytometer (BD FACSort™). The method of Hill et al. (2013) was applied to determine prokaryotic leucine assimilation using L-[4,5-³H] leucine which has a specific activity of 89.3 Ci/mmol­. In the mixed and upper layers of the water column, the protocol in Zubkov et al. (2007) was followed. Below the mixed layer, adaptions to the method included reducing the concentration of ³H-Leucine to 0.005, 0.01, 0.025, 0.04 and 0.05 nM; increasing experimental volumes to 30 ml; enhancing incubation times to 30, 60, 90 and 120 min. These adaptions were made to improve accuracy where lower rates of leucine assimilation were expected. Data were provided by the British Oceanographic Data Centre and funded by the National Environment Research Council.
    Keywords: 74EQ20171115; Angular scattering coefficient, 700 nm; Attenuation, optical beam transmission; Bacteria; Barometer, Paroscientific, Digiquartz TC; biological carbon pump; Calculated; Calculated according to UNESCO (1983); Calculation according to Kunze et al. (2006); Carbon, organic, dissolved; Carbon, organic, dissolved, flux; Carbon, organic, particulate; Chlorophyll a; Colorimetric analysis; COMICS; Conductivity sensor, SEA-BIRD SBE 4C; Controls over Ocean Mesopelagic Interior Carbon Storage; CTD/Rosette; CTD-RO; DATE/TIME; Density, sigma-theta (0); DEPTH, water; Discovery (2013); Dissipation rate; Dissolved Oxygen Sensor, Sea-Bird, SBE 43 and SBE 43F; DY086; DY086_CTD002; DY086_CTD003; DY086_CTD004; DY086_CTD005; DY086_CTD006; DY086_CTD007; DY086_CTD008; DY086_CTD009; DY086_CTD010; DY086_CTD015; DY086_CTD016; DY086_CTD017; DY086_CTD018; DY086_CTD019; DY086_CTD020; DY086_CTD021; DY086_CTD022; DY086_CTD023; DY086_CTD024; DY086_CTD026; DY086_CTD027; DY086_CTD028; DY086_CTD029; DY086_CTD030; DY086_CTD031; DY086_CTD032; DY086_CTD033; Eddy diffusivity; Event label; Flow cytometer, Becton Dickinson, FACSort; Fluorometer, Chelsea Instruments, Aquatracka MKIII; fluxes; High Temperature Catalytic Oxidation, Shimadzu TOC-VCPN; LATITUDE; Leucine uptake rate; Liquid scintillation counter, Packard, TRI-CARB 3100TR; LONGITUDE; marine biogeochemistry; Net primary production of carbon; Nitrate; Organic Elemental Analyzer, Thermo Fisher Scientific, Flash 2000; Oxygen; Oxygen saturation; PAR sensor, Biospherical, LI-COR, SN 70510; PAR sensor, Biospherical, LI-COR, SN 70520; Phosphate; Radiation, photosynthetically active; Radioassays, liquid scintillation counting; Salinity; Scattering meter, WET Labs, ECO-BB OBS; Silicate; Site; SUMMER; Sustainable Management of Mesopelagic Resources; Temperature, water; Temperature sensor, SEA-BIRD SBE 3Plus; Transmissometer, WET Labs, C-Star
    Type: Dataset
    Format: text/tab-separated-values, 171794 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L15610, doi:10.1029/2012GL052980.
    Description: The role of biominerals in driving carbon export from the surface ocean is unclear. We compiled surface particulate organic carbon (POC), and mineral ballast export fluxes from 55 different locations in the Atlantic and Southern Oceans. Substantial surface POC export accompanied by negligible mineral export was recorded implying that association with mineral phases is not a precondition for organic export to occur. The proportion of non-mineral associated sinking POC ranged from 0 to 80% and was highest in areas previously shown to be dominated by diatoms. This is consistent with previous estimates showing that transfer efficiency in such regions is low. However we propose that, rather than the low transfer efficiency arising from diatom blooms being inherently characterized by poorly packaged aggregates which are efficiently exported but which disintegrate readily in mid water, it is due to such environments having very high levels of unballasted organic C export.
    Description: This work is part of the lead author’s doctoral research and was supported by the CalMarO program, (E.U, grant agreement 215157) and by the U.K. Ocean 2025 program.
    Description: 2013-03-11
    Keywords: 234Th ; POC ; Ballast ; Particles export
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Advances in Geosciences, 45 . pp. 343-361.
    Publication Date: 2021-02-08
    Description: The United Nations proclaimed a decade of marine science for sustainable development (2021–2030) to develop a common framework that will ensure that ocean science can fully support countries in achieving the goal of sustainable development. Marine scientific understanding is fundamental to managing human activities that affect this environment, and ocean observations have a particularly important role in enhancing the knowledge base of our oceans. With this important task, scientists have the responsibility to act in an ethical way and apply all the fundamental principles described in the Cape Town statement: (a) ethical values, (b) social values and (c) cultural values (Peppoloni and Di Capua, 2017). This article is a fist attempt to highlight the core values applicable to ocean observation, which can then be improved and adopted as part of geoethics and the stewardship of the Earth system. It opens up avenues for reflection on geoethical implications in the field of ocean observation and suggests nine key principles that marine scientists could follow in their innovative research regarding open access to data, effectiveness, compliance with laws, environmental respect and nature conservation, reciprocal relation and cultural respect, equity and fairness, knowledge transfer, governance adapted to socio-ecological systems, and the use of animals in research.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-08
    Description: The role of biominerals in driving carbon export from the surface ocean is unclear. We compiled surface particulate organic carbon (POC), and mineral ballast export fluxes from 55 different locations in the Atlantic and Southern Oceans. Substantial surface POC export accompanied by negligible mineral export was recorded implying that association with mineral phases is not a precondition for organic export to occur. The proportion of non-mineral associated sinking POC ranged from 0 to 80% and was highest in areas previously shown to be dominated by diatoms. This is consistent with previous estimates showing that transfer efficiency in such regions is low. However we propose that, rather than the low transfer efficiency arising from diatom blooms being inherently characterized by poorly packaged aggregates which are efficiently exported but which disintegrate readily in mid water, it is due to such environments having very high levels of unballasted organic C export.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 112 (4). pp. 1089-1094.
    Publication Date: 2021-04-23
    Description: The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-07-06
    Description: Sinking of aggregated phytoplankton cells is a crucial mechanism for transporting carbon to the seafloor and benthic ecosystem, with such aggregates often scavenging particulate material from the water column as they sink. In the vicinity of drilling rigs used by the oil and gas industry, the concentration of particulate matter in the water column may at times be enriched as a result of the discharge of ‘drill cuttings’ – drilling waste material. This investigation exposed laboratory produced phytoplankton aggregates to drill cuttings of various composition (those containing no hydrocarbons from reservoir rocks and those with a 〈1% hydrocarbon content) and assessed the change in aggregate size, settling rate and resuspension behavior of these using resuspension chambers and settling cylinders. Results indicate that both settling velocity and seabed stress required to resuspend the aggregates are greater in aggregates exposed to drill cuttings, with these increases most significant in aggregates exposed to hydrocarbon containing drill cuttings.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-08
    Description: Correlations between particulate organic carbon (POC) and mineral fluxes in the deep ocean have inspired the inclusion of “ballast effect” parameterizations in carbon cycle models. A recent study demonstrated regional variability in the effect of ballast minerals on the flux of POC in the deep ocean. We have undertaken a similar analysis of shallow export data from the Arctic, Atlantic, and Southern Oceans. Mineral ballasting is of greatest importance in the high-latitude North Atlantic, where 60% of the POC flux is associated with ballast minerals. This fraction drops to around 40% in the Southern Ocean. The remainder of the export flux is not associated with minerals, and this unballasted fraction thus often dominates the export flux. The proportion of mineral-associated POC flux often scales with regional variation in export efficiency (the proportion of primary production that is exported). However, local discrepancies suggest that regional differences in ecology also impact the magnitude of surface export. We propose that POC export will not respond equally across all high-latitude regions to possible future changes in ballast availability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-04-23
    Description: The ocean contributes to regulating atmospheric CO2 levels, partly via variability in the fraction of primary production (PP) which is exported out of the surface layer (i.e., the e ratio). Southern Ocean studies have found that contrary to global-scale analyses, an inverse relationship exists between e ratio and PP. This relationship remains unexplained, with potential hypotheses being (i) large export of dissolved organic carbon (DOC) in high PP areas, (ii) strong surface microbial recycling in high PP regions, and/or (iii) grazing-mediated export that varies inversely with PP. We find that the export of DOC has a limited influence in setting the negative e ratio/PP relationship. However, we observed that at sites with low PP and high e ratios, zooplankton-mediated export is large and surface microbial abundance low suggesting that both are important drivers of the magnitude of the e ratio in the Southern Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can enhance primary productivity, and mineral particles act as ballast, increasing sinking rates of particulate organic matter. Here we present a two-year time series of sediment trap observations of particulate organic carbon flux to 3,000 m depth, measured directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion of primary production is exported to depth in the dust-rich North Atlantic gyre. Low stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of nitrogen fixation and productivity following the deposition of dust-borne nutrients. Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing Trichodesmium species. Whereas ballast in the southern gyre is predominantly biogenic, dust-derived mineral particles constitute the dominant ballast element during the enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases carbon sequestration in the North Atlantic gyre through the fertilization of the nitrogen-fixing community in surface waters and mineral ballasting of sinking particles
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...