GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Leuven :Leuven University Press,
    Keywords: Archaeology and natural disasters-Greece-Crete. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (408 pages)
    Edition: 1st ed.
    ISBN: 9789461662187
    Series Statement: Studies in Archaeological Sciences Series ; v.5
    Language: English
    Note: Intro -- _GoBack -- List of key abbreviations and definitions -- Chronological table -- Part 1 -- Introduction and theoretical background -- Chapter 1 -- 'In bulls doth the Earth-Shaker delight' - Introduction to the volume1 -- Jan Driessen -- Chapter 2 -- Seismological issues of concern for archaeoseismology -- Susan E. Hough -- Chapter 3 -- Palaeoseismology -- James P. McCalpin -- Chapter 4 -- Archaeoseismology -- Manuel Sintubin -- Chapter 5 -- Non-invasive techniques in archaeoseismology -- Christoph Grützner & -- Thomas Wiatr -- Part 2 -- Geological and seismotectonic context -- Chapter 6 -- The geological setting of Crete: an overview -- Charalampos Fassoulas -- Chapter 7 -- Earthquake sources and seismotectonics in the area of Crete -- Gerassimos A. Papadopoulos -- Chapter 8 -- The palaeoseismological study of capable faults on Crete -- Jack Mason & -- Klaus Reicherter -- Part 3 -- Minoan archaeoseismology -- Chapter 9 -- Archaeoseismological research on Minoan Crete: past and present -- Simon Jusseret -- Chapter 10 -- An architectural style of openness and mutability as stimulus for the development of an earthquake-resistant building technology at Akrotiri, Thera, and Minoan Crete -- Clairy Palyvou -- Chapter 11 -- Minoan structural systems: earthquake-resistant characteristics. The role of timber -- Eleftheria Tsakanika -- Part 4 -- Case studies -- Chapter 12 -- Evidence for three earthquakes at Mochlos in the Neopalatial period, c. 1700-1430 BC -- Jeffrey S. Soles, Floyd W. McCoy & -- Rhonda Suka -- Chapter 13 -- Punctuation in palatial prehistory: earthquakes as the stratigraphical markers of the 18th-15th centuries BC in central Crete -- Colin F. Macdonald -- Chapter 14 -- Man the measure: earthquakes as depositional agents in Minoan Crete -- Tim Cunningham -- Part 5 -- Critical appraisal and conclusion -- Chapter 15. , Earthquakes and Minoan Crete: breaking the myth through interdisciplinarity -- Simon Jusseret & -- Manuel Sintubin -- About the authors -- About the editors -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Paleoseismology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (916 pages)
    Edition: 2nd ed.
    ISBN: 9780080919980
    Series Statement: Issn Series ; v.Volume 95
    DDC: 551.22
    Language: English
    Note: Front Cover -- Paleoseismology -- Copyright Page -- Contents -- Contributors -- Preface to the Second Edition -- Chapter 1: Introduction to Paleoseismology -- 1.1. The Scope of Paleoseismology -- 1.1.1. Definition and Objectives -- 1.1.2. Organization and Scope of This Book -- 1.1.3. The Relation of Paleoseismology to Other Neotectonic Studies -- 1.2. Identifying Prehistoric Earthquakes from Primary and Secondary Evidence -- 1.2.1. Classification of Paleoseismic Evidence -- 1.2.2. The Incompleteness of the Paleoseismic Record -- 1.2.3. Underrepresentation Versus Overrepresentation of the Paleoseismic Record -- 1.3. Prehistoric Earthquake Dating and Recurrence -- 1.3.1. Dating Accuracy and Precision and Their Relation to Recurrence -- 1.3.2. Patterns in Recurrence -- 1.4. Estimating the Magnitude of Prehistoric Earthquakes -- 1.5. The Early Development of Paleoseismology, 1890-1980 -- Acknowledgments -- Chapter 2A: Field Techniques in Paleoseismology-Terrestrial Environments -- 2A.1. Introduction -- 2A.1.1. Scope of the Chapter -- 2A.1.2. Preferred Sequence of Investigations -- 2A.2. Mapping Paleoseismic Landforms -- 2A.2.1. Locating Surface Deformation -- 2A.2.2. Mapping Deposits Versus Landforms in Seismic Areas -- 2A.2.3. Detailed Topographic Mapping -- 2A.2.4. Topographic Profiling -- 2A.2.5. Dating Methods for Late Quaternary Landforms -- 2A.3. Mapping Paleoseismic Stratigraphy -- 2A.3.1. Geophysical Techniques in Paleoseismology -- 2A.3.2. Trenching -- 2A.3.3. Drilling, Coring, Slicing, and Peeling -- 2A.3.4. Dating Methods for Late Quaternary Deposits -- 2A.4. Distinguishing Paleoseismic Features from Nonseismic orNontectonic Features -- 2A.4.1. Special Case: Stable Continental Interiors -- 2A.5. Specialized Subfields of Paleoseismology -- 2A.5.1. Archeoseismology -- 2A.5.2. Dendroseismology -- Chapter 2B: Sub-Aqueous Paleoseismology. , 2B.1. Introduction -- 2B.1.1. Scope of the Chapter -- 2B.2. Mapping and Dating Paleoseismic Landforms Offshore -- 2B.2.1. Submarine Mapping and Imaging Methods -- 2B.2.2. Dating Submarine Structures, Landforms, and Deposits Using Paleoseismic Stratigraphy -- 2B.3. Locating Primary Evidence: Active Faulting and Structures -- 2B.3.1. Direct Fault Investigations -- 2B.3.2. Off-Fault Investigation -- 2B.4. Locating Secondary Evidence: Landslides, Turbidites, Submarine Tsunami Deposits -- 2B.4.1. Distinguishing Earthquake and Nonearthquake Triggering Mechanisms -- 2B.4.2. Turbidite Paleoseismology -- 2B.4.3. Offshore Tsunami Deposits -- 2B.4.4. Lacustrine Environments -- 2B.4.5. Submarine Landslides Triggered by Earthquakes -- 2B.4.6. Coeval Fault Motion and Fluid Venting Evidence -- Acknowledgments -- Chapter 3: Paleoseismology in Extensional Tectonic Environments -- 3.1. Introduction -- 3.1.1. Styles, Scales, and Environments of Extensional Deformation -- 3.1.2. The Earthquake Deformation Cycle in Extensional Environments -- 3.1.3. Historic Analog Earthquakes -- 3.2. Geomorphic Evidence of Paleoearthquakes -- 3.2.1. Tectonic Geomorphology of Normal Fault Blocks -- 3.2.2. Features of Bedrock Fault Planes and Other Rock Surfaces -- 3.2.3. Formation of Fault Scarps in Unconsolidated Deposits -- 3.2.4. Degradation of Fault Scarps in Unconsolidated Deposits -- 3.2.5. Spatial and Temporal Variations in Surface Displacement -- 3.2.6. Geomorphic Features Formed by Single and Recurrent Faulting -- 3.3. Stratigraphic Evidence of Paleoearthquakes -- 3.3.1. Characteristics of Near-Surface Normal Faults in Section -- 3.3.2. Distinguishing Tectonic from Depositional Features -- 3.3.3. Sedimentation and Soil Formation in the Fault Zone -- 3.3.4. Measuring Displacement on Normal Fault Exposures -- 3.3.5. Distinguishing Creep Displacement from Episodic Displacement. , 3.4. Dating Paleoearthquakes -- 3.4.1. Direct Dating of the Exposed Fault Plane -- 3.4.2. Direct Dating via Scarp Degradation Modeling -- 3.4.3. Age Estimates from Soil Development on Fault Scarps -- 3.4.4. Bracketing the Age of Faulting by Dating Geomorphic Surfaces -- 3.4.5. Bracketing the Age of Faulting by Dating Displaced Deposits -- 3.4.6. Bracketing the Age of Faulting by Dating Colluvial Wedges -- 3.4.7. Age Estimates from Cosmogenic Nuclides in Depth Profiles on Fault Scarps -- 3.5. Interpreting the Paleoseismic History by Retrodeformation -- 3.5.1. Types of Retrodeformations -- 3.5.2. Assumptions Used when Restoring Strata to their Prefaulting Geometry -- 3.5.3. Accounting for Soil Development in Retrodeformation -- 3.6. Distinguishing Tectonic from Nontectonic Normal Faults -- 3.6.1. Tectonic, but Nonseismogenic Normal Faults -- 3.6.2. Nontectonic, but Seismogenic Normal Faults -- 3.6.3. Nontectonic and Nonseismogenic Normal Faults -- Chapter 4: Paleoseismology of Volcanic Environments -- 4.1. Introduction -- 4.2. Volcano-Extensional Structures -- 4.2.1. Worldwide Examples of Volcano-Extensional Structures -- 4.2.2. Central Volcanoes and Calderas -- 4.2.3. Volcanic Rift Zones -- 4.2.4. Magma-Induced Slope Instability -- 4.2.1. Worldwide Examples of Volcano-Extensional Structures -- 4.3. Criteria for Field Recognition of Volcano-Extensional Features -- 4.3.1. Results of Empirical and Numerical Modeling -- 4.3.2. Volcano-Tectonic Geomorphology -- 4.3.3. Geophysical Methods -- 4.3.4. Geodetic Remote-Sensing Techniques -- 4.4. Paleoseismological Implications and Methods -- 4.4.1. Excavation -- 4.4.2. Geochronology -- 4.4.3. Recurrence Intervals -- 4.4.4. Maximum Magnitude -- 4.5. Conclusions -- 4.6. Information on the Companion Web site -- Acknowledgments -- Chapter 5: Paleoseismology of Compressional Tectonic Environments -- 5.1. Introduction. , 5.1.1. Organization of This Chapter -- 5.1.2. Styles, Scales, and Environments of Deformation -- 5.1.3. The Earthquake Deformation Cycle of Reverse Faults -- 5.1.4. Historic Analog Earthquakes -- 5.2. Geomorphic Evidence of Reverse Paleoearthquakes -- 5.2.1. Initial Morphology of Reverse and Thrust Fault Scarps -- 5.2.2. Degradation of Thrust Fault Scarps -- 5.2.3. Interaction of Thrust Fault Scarps with Geomorphic Surfaces -- 5.2.4. Slip Rate Studies -- 5.2.5. Spatial and Temporal Variations in Surface Displacement -- 5.3. Stratigraphic Evidence of Reverse and Thrust Paleoearthquakes -- 5.3.1. General Style of Deformation on Reverse Faults in Section -- 5.3.2. Trenching Techniques -- 5.3.3. Structure and Evolution of Reverse-Fault Scarps -- 5.3.4. Structure and Evolution of Thrust Fault Scarps -- 5.3.5. Stratigraphic Bracketed Offset -- 5.3.6. Fault-Onlap Sedimentary Sequences -- 5.3.7. Summary of Stratigraphic Evidence for Thrust Paleoearthquakes -- 5.3.8. Distinguishing Creep Displacement from Episodic Displacement -- 5.4. Dating Paleoearthquakes -- 5.4.1. Direct Dating of the Exposed Fault Plane -- 5.4.2. Direct Dating via Scarp Degradation Modeling -- 5.4.3. Age Estimates from Soil Development on Fault Scarps -- 5.4.4. Bracketing the Age of Faulting by Dating Displaced Deposits -- 5.5. Interpreting the Paleoseismic History by Retrodeformation -- 5.5.1. Rigid-Block Retrodeformations -- 5.5.2. Plastic Retrodeformations -- 5.6. Distinguishing Seismogenic from Nonseismogenic Reverse Faults -- 5.6.1. Tectonic, but Nonseismogenic Reverse Faults -- 5.6.2. Nontectonic, but Seismogenic Reverse Faults -- 5.6.3. Nontectonic and Nonseismogenic Reverse Faults -- 5.7. Hazards Due to Reverse Surface Faulting -- 5.8. Paleoseismic Evidence of Coseismic Folding -- 5.8.1. Geomorphic Evidence of Active Surface Folding. , 5.8.2. Stratigraphic Evidence of Active Surface Folding -- 5.8.3. Assessing Seismic Hazards from Blind Thrusts -- 5.9. Paleoseismology of Subduction Zones -- 5.9.1. Introduction -- 5.9.2. Segmentation of Subduction Zones -- 5.9.3. Surface Faulting: Upper Plate Versus Plate-Boundary Structures -- 5.9.4. Historic Subduction Earthquakes as Modern Analogs for Paleoearthquakes -- 5.9.5. The Earthquake Deformation Cycle in Subduction Zones -- 5.10. Late Quaternary Sea Level -- 5.10.1. Sea-Level Index Points along Erosional Shorelines -- 5.10.2. Sea-Level Index Points Along Depositional Shorelines -- 5.11. The Coseismic Earthquake Horizon -- 5.11.1. Characteristics of Coseismic Earthquake Horizons -- 5.11.2. Earthquake-Killed Trees -- 5.11.3. Tsunami Deposits -- 5.11.5. Summary of Stratigraphic Evidence for Paleoseismicity -- 5.12. Paleoseismic Evidence of Coseismic Uplift -- 5.12.1. Alaska -- 5.12.2. Cascadia Subduction Zone -- 5.13. Paleoseismic Evidence of Coseismic Subsidence -- 5.13.1. Alaska -- 5.13.2. Cascadia Subduction Zone -- 5.13.3. Ambiguities in Characterizing Subduction Paleoearthquakes -- Chapter 6: Paleoseismology of Strike-Slip Tectonic Environments -- 6.1. Introduction -- 6.1.1. Styles, Scales, and Environments of Deformation -- 6.1.2. Segmentation of Strike-Slip Faults -- 6.1.3. The Earthquake Deformation Cycle of Strike-Slip Faults -- 6.1.4. Historic Analog Earthquakes -- 6.2. Geomorphic Evidence of Paleoearthquakes -- 6.2.1. Landforms Used as Piercing Points -- 6.2.2. Using Lateral Offsets to Calculate Long-Term Slip Rates -- 6.2.3. Spatial and Temporal Variations in Surface Displacement -- 6.2.4. Reconstructing Individual Earthquake Displacements -- 6.3. Stratigraphic Evidence of Paleoearthquakes -- 6.3.1. General Style of Deformation on Strike-Slip Faults in Section -- 6.3.2. Sedimentation and Weathering in Strike-Slip Fault Zones. , 6.3.3. Trenching Techniques.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-15
    Description: Fault displacement hazard assessment is based on empirical relationships that are established using historic earthquake fault ruptures. These relationships evaluate the likelihood of coseismic surface slip considering on-fault and off-fault ruptures, for given earthquake magnitude and distance to fault. Moreover, they allow predicting the amount of fault slip at and close to the active fault of concern. Applications of this approach include land use planning, structural design of infrastructure, and critical facilities located on or close to an active fault. To date, the current equations are based on sparsely populated datasets, including a limited number of pre-2000 events. In 2015, an international effort started to constitute a worldwide and unified fault displacement database (SUrface Ruptures due to Earthquakes [SURE]) to improve further hazard estimations. After two workshops, it was decided to unify the existing datasets (field-based slip measurements) to incorporate recent and future cases, and to include new parameters relevant to properly describe the rupture. This contribution presents the status of the SURE database and delineates some perspectives to improve the surface-faulting assessment. Original data have been compiled and adapted to the structure. The database encompasses 45 earthquakes from magnitude 5–7.9, with more than 15,000 coseismic surface deformation observations (including slip measurements) and 56,000 of rupture segments. Twenty earthquake cases are from Japan, 15 from United States, two from Mexico, Italy, and New Zealand, one from Kyrgystan, Ecuador, Turkey, and Argentina. Twenty-four earthquakes are strike-slip faulting events, 11 are normal or normal oblique, and 10 are reverse faulting.
    Description: Published
    Description: 499–520
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: surface rupture ; fault displacement hazard ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...