GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The Giardia genome project database provides an online resource for Giardia lamblia (WB strain, clone C6) genome sequence information. The database includes edited single-pass reads, the results of BLASTX searches, and details of progress towards sequencing the entire 12 million-bp Giardia genome. Pre-sorted BLASTX results can be retrieved based on keyword searches and BLAST searches of the high throughput Giardia data can be initiated from the web site or through NCBI. Descriptions of the genomic DNA libraries, project protocols and summary statistics are also available. Although the Giardia genome project is ongoing, new sequences are made available on a bi-monthly basis to ensure that researchers have access to information that may assist them in the search for genes and their biological function. The current URL of the Giardia genome project database is .
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Giardia lamblia is an important human intestinal parasite that survives outside of the host by differentiation of trophozoites into infectious cysts. Transcriptional regulation is key for encystation gene expression, but the mechanisms are unknown. Giardia genome database searches identified a myb -like gene ( gmyb2 ) whose expression increased during encystation. Epitope-tagged gMyb2 localized to both nuclei. DNA binding and mutation analysis showed that gMyb2 binds specifically to C(T/A)ACAG, a c-Myb-like target sequence in the promoters of encystation-induced genes encoding gMyb2, three cyst wall proteins and G6PI-B, a key enzyme in cyst wall polysaccharide biosynthesis. gMyb2 binding sites were not found in the upstream regions of 31 other giardial genes. Deletion of the putative gMyb2 binding site greatly reduced encystation-specific promoter activity of g6pi-b . Fusion of gMyb2 binding sites to the constitutive ran promoter or g6pi-b promoter deletion lacking the gMyb2 binding site in-duced encystation-specific expression. gMyb2 may play an important role in transcriptional regulation of encystation genes, and may help co-ordinate synthesis of cyst wall proteins and polysaccharide. gMyb2 is the first giardial transcription factor to be functionally identified and the first that is associated with upregulation of encystation genes. This work provides a model for study of differential gene regulation in early diverging eukaryotic organisms.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1432
    Keywords: Key words: Protozoa — Flagellate —Ancyromonas—Apusomonas— Opisthokont — 18S small subunit ribosomal DNA — Phylogeny
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Molecular and morphological evidence points to the ancyromonad Ancyromonas as a plausible candidate for the closest relative to the common ancestor of metazoans, fungi, and choanoflagellates (the Opisthokonta). Using 18S rDNA sequences from most of the major eukaryotic lineages, maximum-likelihood, minimum-evolution, and maximum-parsimony analyses yielded congruent phylogenies supporting this hypothesis. Combined with ultrastructural similarities between Ancyromonas and opisthokonts, the evidence presented here suggests that Ancyromonas may form an independent lineage, the Ancyromonadida Cavalier-Smith 1997, closer in its relationship to the opisthokonts than is its nearest protist relatives, the Apusomonadida. However, the very low bootstrap support for deep nodes and hypothesis testing indicate that the resolving power of 18S rDNA sequences is limited for examining this aspect of eukaryotic phylogeny. Alternate branching positions for the Ancyromonas lineage cannot be robustly rejected, revealing the importance of ultrastructure when examining the origins of multicellularity. The future use of a multigene approach may additionally be needed to resolve this aspect of eukaryotic phylogeny.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Cold Spring Harbor Laboratory Press, 2004. This article is posted here by permission of Cold Spring Harbor Laboratory Press for personal use, not for redistribution. The definitive version was published in Genome Research 14 (2004): 1537-1547, doi:10.1101/gr.2256604.
    Description: The Giardia lamblia genome sequencing project affords us a unique opportunity to conduct comparative analyses of core cellular systems between early and late-diverging eukaryotes on a genome-wide scale. We report a survey to identify canonical transcription components in Giardia, focusing on RNA polymerase (RNAP) subunits and transcription-initiation factors. Our survey revealed that Giardia contains homologs to 21 of the 28 polypeptides comprising eukaryal RNAPI, RNAPII, and RNAPIII; six of the seven RNAP subunits without giardial homologs are polymerase specific. Components of only four of the 12 general transcription initiation factors have giardial homologs. Surprisingly, giardial TATA-binding protein (TBP) is highly divergent with respect to archaeal and higher eukaryotic TBPs, and a giardial homolog of transcription factor IIB was not identified. We conclude that Giardia represents a transition during the evolution of eukaryal transcription systems, exhibiting a relatively complete set of RNAP subunits and a rudimentary basal initiation apparatus for each transcription system. Most class-specific RNAP subunits and basal initiation factors appear to have evolved after the divergence of Giardia from the main eukaryotic line of descent. Consequently, Giardia is predicted to be unique in many aspects of transcription initiation with respect to paradigms derived from studies in crown eukaryotes.
    Description: This work was supported in part by NIH grant AI43273 to M.L.S., by NIH grant AI51089 to A.G.M, and DOE grant DE-FG02-01ER63201 to G.J.O. Additional support was provided by the G. Unger Vetlesen Foundation and LI-COR Biotechnology.
    Keywords: Giardia lamblia ; Eukaryal transcription systems
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 243197 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Society for Microbiology, 2006. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Eukaryotic Cell 5 (2006): 2062-2071, doi:10.1128/EC.00205-06.
    Description: Trichomonas vaginalis is a unicellular eukaryote that lacks mitochondria and contains a specialized organelle, the hydrogenosome, involved in carbohydrate metabolism and iron-sulfur cluster assembly. We report the identification of two glycine cleavage H proteins and a dihydrolipoamide dehydrogenase (L protein) of the glycine decarboxylase complex in T. vaginalis with predicted N-terminal hydrogenosomal presequences. Immunofluorescence analyses reveal that both H and L proteins are localized in hydrogenosomes, providing the first evidence for amino acid metabolism in this organelle. All three proteins were expressed in Escherichia coli and purified to homogeneity. The experimental Km of L protein for the two H proteins were 2.6 µM and 3.7 µM, consistent with both H proteins serving as substrates of L protein. Analyses using purified hydrogenosomes showed that endogenous H proteins exist as monomers and endogenous L protein as a homodimer in their native states. Phylogenetic analyses of L proteins revealed that the T. vaginalis homologue shares a common ancestry with dihydrolipoamide dehydrogenases from the firmicute bacteria, indicating its acquisition via a horizontal gene transfer event independent of the origins of mitochondria and hydrogenosomes.
    Description: This work was supported by National Institutes of Health (NIH) grants to P.J.J., a Burroughs-Wellcome Molecular Parasitology Award to P.J.J., and an NIH Microbial Pathogenesis Training Grant (2-T32-AI-07323) to M.T.B. A.G.M. was supported by the Marine Biological Laboratory's Program in Global Infectious Disease, funded by the Ellison Medical Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 3312882 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e79574, doi:10.1371/journal.pone.0079574.
    Description: Transcription factors in the CNC-bZIP family (NFE2, NRF1, NRF2 and NRF3) regulate genes with a wide range of functions in response to both physiological and exogenous signals, including those indicating changes in cellular redox status. Given their role in helping to maintain cellular homeostasis, it is imperative to understand the expression, regulation, and function of CNC-bZIP genes during embryonic development. We explored the expression and function of six nrf genes (nfe2, nrf1a, nrf1b, nrf2a, nrf2b, and nrf3) using zebrafish embryos as a model system. Analysis by microarray and quantitative RT-PCR showed that genes in the nrf family were expressed throughout development from oocytes to larvae. The spatial expression of nrf3 suggested a role in regulating the development of the brain, brachia and pectoral fins. Knock-down by morpholino anti-sense oligonucleotides suggested that none of the genes were necessary for embryonic viability, but nfe2 was required for proper cellular organization in the pneumatic duct and subsequent swim bladder function, as well as for proper formation of the otic vesicles. nrf genes were induced by the oxidant tert-butylhydroperoxide, and some of this response was regulated through family members Nrf2a and Nrf2b. Our results provide a foundation for understanding the role of nrf genes in normal development and in regulating the response to oxidative stress in vertebrate embryos.
    Description: This work was supported, in whole or in part, by National Institutes of Health grants F32ES019832 (to L.M.W.), F32ES017585 (to A.R.T.-L.), R01ES015912 (to J.J.S.), and R01ES016366 (to M.E.H.). This work was also supported by Walter A. and Hope Noyes Smith and the J. Seward Johnson Fund.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Fisheries Society, 2008. This article is posted here by permission of American Fisheries Society for personal use, not for redistribution. The definitive version was published in Transactions of the American Fisheries Society 137 (2008): 1378–1388, doi:10.1577/T07-222.1.
    Description: Of all Pacific salmonids, Chinook salmon Oncorhynchus tshawytscha display the greatest variability in return times to freshwater. The molecular mechanisms of these differential return times have not been well described. Current methods, such as long serial analysis of gene expression (LongSAGE) and microarrays, allow gene expression to be analyzed for thousands of genes simultaneously. To investigate whether differential gene expression is observed between fall- and spring-run Chinook salmon from California's Central Valley, LongSAGE libraries were constructed. Three libraries containing between 25,512 and 29,372 sequenced tags (21 base pairs/tag) were generated using messenger RNA from the brains of adult Chinook salmon returning in fall and spring and from one ocean-caught Chinook salmon. Tags were annotated to genes using complementary DNA libraries from Atlantic salmon Salmo salar and rainbow trout O. mykiss. Differentially expressed genes, as estimated by differences in the number of sequence tags, were found in all pairwise comparisons of libraries (freshwater versus saltwater = 40 genes; fall versus spring = 11 genes; and spawning versus nonspawning = 51 genes). The gene for ependymin, an extracellular glycoprotein involved in behavioral plasticity in fish, exhibited the most differential expression among the three groupings. Reverse transcription polymerase chain reaction analysis verified the differential expression of ependymin between the fall- and spring-run samples. These LongSAGE libraries, the first reported for Chinook salmon, provide a window of the transcriptional changes during Chinook salmon return migration to freshwater and spawning and increase the amount of expressed sequence data.
    Description: This work was supported with a grant from the California Department of Water Resources awarded to M.A.B.; J.C.B. received additional funding from the North Umpqua Foundation, Roseburg, Oregon.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © 2006 Davids et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The definitive version was published in PLoS ONE 1 (2006): e44, doi:10.1371/journal.pone.0000044.
    Description: Since the Giardia lamblia cyst wall is necessary for survival in the environment and host infection, we tested the hypothesis that it contains proteins other than the three known cyst wall proteins. Serial analysis of gene expression during growth and encystation revealed a gene, “HCNCp” (High Cysteine Non-variant Cyst protein), that was upregulated late in encystation, and that resembled the classic Giardia variable surface proteins (VSPs) that cover the trophozoite plasmalemma. HCNCp is 13.9% cysteine, with many “CxxC” tetrapeptide motifs and a transmembrane sequence near the C-terminus. However, HCNCp has multiple “CxC” motifs rarely found in VSPs, and does not localize to the trophozoite plasmalemma. Moreover, the HCNCp C-terminus differed from the canonical VSP signature. Full-length epitope-tagged HCNCp expressed under its own promoter was upregulated during encystation with highest expression in cysts, including 42 and 21 kDa C-terminal fragments. Tagged HCNCp targeted to the nuclear envelope in trophozoites, and co-localized with cyst proteins to encystation-specific secretory vesicles during encystation. HCNCp defined a novel trafficking pathway as it localized to the wall and body of cysts, while the cyst proteins were exclusively in the wall. Unlike VSPs, HCNCp is expressed in at least five giardial strains and four WB subclones expressing different VSPs. Bioinformatics identified 60 additional large high cysteine membrane proteins (HCMp) containing ≥20 CxxC/CxC's lacking the VSP-specific C-terminal CRGKA. HCMp were absent or rare in other model or parasite genomes, except for Tetrahymena thermophila with 30. MEME analysis classified the 61 gHCMp genes into nine groups with similar internal motifs. Our data suggest that HCNCp is a novel invariant cyst protein belonging to a new HCMp family that is abundant in the Giardia genome. HCNCp and the other HCMp provide a rich source for developing parasite-specific diagnostic reagents, vaccine candidates, and subjects for further research into Giardia biology.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Molecular and Biochemical Parasitology 152 (2007): 80-89, doi:10.1016/j.molbiopara.2006.12.001.
    Description: The ability of Giardia lamblia to undergo two distinct differentiations in response to physiologic stimuli is central to its pathogenesis. The giardial cytoskeleton changes drastically during encystation and excystation. However, the signal transduction pathways mediating these transformations are poorly understood. We tested the hypothesis that PP2A, a highly conserved serine/threonine protein phosphatase, might be important in giardial differentiation. We found that in vegetatively growing trophozoites, gPP2A-C protein localizes to basal bodies/centrosomes, and to cytoskeletal structures unique to Giardia: the ventral disk, and the dense rods of the anterior, posterior-lateral, and caudal flagella. During encystation, gPP2A-C protein disappears from only the anterior flagellar dense rods. During excystation, gPP2A-C localizes to the cyst wall in excysting cysts but is not found in the wall of cysts with emerging excyzoites. Transcriptome and immunoblot analyses indicated that gPP2A-C mRNA and protein are upregulated in mature cysts and during the early stage of excystation that models passage through the host stomach. Stable expression of gPP2A-C antisense RNA did not affect vegetative growth, but strongly inhibited the formation of encystation secretory vesicles (ESV) and water-resistant cysts. Moreover, the few cysts that formed were highly defective in excystation. Thus, gPP2A-C localizes to universal cytoskeletal structures and to structures unique to Giardia. It is also important for encystation and excystation, crucial giardial transformations that entail entry into and exit from dormancy.
    Description: This work was funded by NIH grants GM61896, AI51687, AI42488, and DK35108. Dr. A.G. McArthur was supported by NIH grant AI51089 and the Marine Biological Laboratory’s Program in Global Infectious Diseases, funded by the Ellison Medical Foundation.
    Keywords: Giardia ; Encystation ; Excystation ; PP2A ; Cytoskeleton ; Differentiation
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Society for Microbiology, 2006. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Eukaryotic Cell 5 (2006): 1276-1286, doi:10.1128/EC.00116-06.
    Description: The host range of African trypanosomes is influenced by innate protective molecules in the blood of primates. A subfraction of human high-density lipoprotein (HDL) containing apolipoprotein A-I, apolipoprotein L-I, and haptoglobin-related protein is toxic to Trypanosoma brucei brucei but not the human sleeping sickness parasite Trypanosoma brucei rhodesiense. It is thought that T. b. rhodesiense evolved from a T. b. brucei-like ancestor and expresses a defense protein that ablates the antitrypanosomal activity of human HDL. To directly investigate this possibility, we developed an in vitro selection to generate human HDL-resistant T. b. brucei. Here we show that conversion of T. b. brucei from human HDL sensitive to resistant correlates with changes in the expression of the variant surface glycoprotein (VSG) and abolished uptake of the cytotoxic human HDLs. Complete transcriptome analysis of the HDL-susceptible and -resistant trypanosomes confirmed that VSG switching had occurred but failed to reveal the expression of other genes specifically associated with human HDL resistance, including the serum resistance-associated gene (SRA) of T. b. rhodesiense. In addition, we found that while the original active expression site was still utilized, expression of three expression site-associated genes (ESAG) was altered in the HDL-resistant trypanosomes. These findings demonstrate that resistance to human HDLs can be acquired by T. b. brucei.
    Description: These studies were supported by grants AI39033 and AI054596 from the National Institutes of Health and the Ellison Medical Foundation. Mass spectrometry was supported by NIH P20 RR17695 from the Institutional Development Award (IDeA) Program of the National Center for Research Resources. Computational resources were provided by the Josephine Bay Paul Center for Comparative Molecular Biology and Evolution (MBL) through funds provided by the W. M. Keck Foundation and the G. Unger Vetlesen Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...