GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-01
    Description: The spectacular eruption of Lusi began in NE Java, Indonesia, on 29 May 2006 and is still ongoing. Since its birth, Lusi has presented a pulsating activity marked by frequent eruptions of gas, water, mud and clasts. The aim of this study was to bridge subsurface and surface observations to describe Lusi's behaviour. Based on visual observations from 2014 to 2015, Lusi's erupting activity is characterised by four recurrent phases: (1) regular bubbling activity; (2) clastic geysering; (3) clastic geysering with mud bursts and intense vapour discharge; (4) quiescent phase. With a temporary network of five seismic stations deployed around the crater, we could identify tremor events related to phases 2 and 3. One of the tremor types shows periodic overtones that we associate with mud wagging in the feeder conduit. On the basis of our observations, we would describe Lusi as a sedimentary‐hosted hydrothermal system with clastic‐dominated geysering activity.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Detailed analysis of two-dimensional seismic lines acquired in the NE Java basin has been performed to unravel the subsurface geology of the region around the Lusi mud eruption. This work revealed the existence of a system consisting of a complex set of faults, here called the Watukosek fault system, forming triangular deformation zones converging at the top of the early Miocene Carbonates. This system continues downwards with vertical individual fault segments, often bordering the steep margins of the carbonate platforms. The analysis of data includes the interpretation of seismic lines, regional structural data inferred from basement gravity maps and present-day main direction of stress. Results suggest that a possible rotation of stress direction from N40E-S40W to N-S occurred during the post-Miocene history of the Java back arc tectonic evolution. The Watukosek fault system was first generated as a tensional lineament during the E-W sinistral transpressive strain, which involved the basement. In this phase, synthetic and antithetic Riedel faults formed, the former controlling the NW-SE orientation of the structural highs represented by Oligo-Miocene carbonate platforms. As a consequence of the rotation of the main principal stress direction to a N-S direction, the Watukosek fault and similar parallel lineaments became sinistral Riedel shears, developing intense triangular deformation zones. Based on the stratigraphic position of gentle anticlinal deformations with axis corresponding to the N40E-S40W oriented triangular deformation zones, the transpressive strain linked to the N-S main stress compression occurred likely in the Late Pliocene-Early Pleistocene. The detailed examination of a) stratigraphy at the wells BJP-1 and Porong-1 as well as b) the seismo-stratigraphic architecture of the entire succession in the study area, allowed a new subsurface interpretation and revision of the stratigraphic units below Lusi. The thick Early Miocene Tuban Formation is found sandwiched between the coheval Upper Kalibeng Formation and the Early Miocene Carbonate of the Kujung Formation, which in turn overlain the older Ngimbang Formation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: From its inception May 29, 2006, the Lusi mud eruption has continuously erupted fluids, boiling mud and clasts through large active vents approximately 100 m in diameter. In 2016, we conducted a Dynamic Gravity survey (DG) using a network built over four locations and two Continuous Gravity-monitoring (CG) experiments to monitor the eruption activity. The CG was done for 8 days from June 2nd to June 10th, and for 9 days from August 20th to August 29th, 2016. Atmospheric pressure and atmospheric temperature variations were recorded during each experiment to constrain potential environmental effects, and Earth and oceanic tide effects were removed from gravity signals (CG and DG). Atmospheric pressure effects were removed from CG gravity signals. At the station, closest to the hydrothermal pond, the DG survey results show a gravity increase of ∼0.009 mGal month−1, which we interpret as the growth of the mud edifice in the central area. CG-monitoring shows that gravity variations occur at a period of 12–13 h, with amplitudes reaching up to 0.020 mGal. We interpret this as relating to density variation of the rising mud mixture (fluids + coarse mud + clasts). The observed 12–13 h period variations appear to indicate that tides may have some control on the density change of rising mud mixture by triggering the release of gas trapped at depth. Our 3D gravity results around the Lusi vents show that density variations range from 100 kg m−3 to 775 kg m−3. Similarly, vent diameters better constrain density contrasts occurring within the caldera zone, which is more likely to range between 400 and 450 kg m−3, and is equivalent respectively to 27% and 31% of gas ratio change over time.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: The spectacular Lusi mud eruption started in northeast Java, Indonesia, the 29th of May 2006 following a M6.3 strike slip seismic event. After the earthquake several mud pools aligned along a NE-SW direction appeared in the Sidoarjo district. The most prominent eruption site was named Lusi. Lusi is located ∼10 km to the NE of the northernmost cone of the Arjuno-Welirang volcanic complex with which it is connected by the Watukosek Fault System. In this study, we applied the HVSR method, which is a common tool used for site effect investigations as well as to infer buried structures and reconstruct sub-surface geology. The method is based on the ratio of the horizontal to vertical components of ground motion and it generally exhibits a peak corresponding to the fundamental frequency of the site. Spectral ratio results highlight a fundamental frequency band between 0.4 and 1.0 Hz in the Lusi neighborhood. We interpret these peaks as related to the velocity lithological contrast at depth between alluvial deposits and bluish grey clay. Our analysis also highlights the presence of a “depocenter”, characterized by fundamental frequency up to 0.3 Hz, which is interpreted as the subsidence caused by withdrawal of mud and fluids from depth (as also shown by the comparison of the HVSR results with gravimetry data). Moreover, in the area of the Lusi vent a broad-band frequency range is related to the Lusi conduit. In this paper, we show that detailed microtremor surveys could be used as a preliminary and fast approach to locate mud conduits with sufficient precision.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: We study the local seismicity in East Java around the Arjuno-Welirang volcanic complex that is connected via the Watukosek Fault System, to the spectacular Lusi eruption site. Lusi is a sediment-hosted hydrothermal system which has been erupting since 2006. It is fed by both mantellic and hydrothermal fluids, rising and mixing with the thermogenic gases and other fluids from shallower sedimentary formations. During a period of 24 months, we observe 156 micro-seismic earthquakes with local magnitudes ranging from ML0.5 to ML1.9, within our network. The events predominantly nucleate at depths of 8–13 km below the Arjuno-Welirang volcanic complex. Despite the geological evidence of active tectonic deformation and faulting observed at the surface, practically no seismicity is observed in the sedimentary basin hosting Lusi. Although we cannot entirely rule out artifacts due to an increased detection threshold in the sedimentary basin, the deficit in significant seismicity suggests aseismic deformation beneath Lusi due to the large amount of fluids that may lubricate the fault system. An analysis of focal mechanisms of nine selected events around the Arjuno-Welirang volcanic complex indicates predominantly strike-slip faulting activity in the region SW of Lusi. This type of activity is consistent with observable features such as fault escarpment, river deviation and railroad deformation; suggesting that the Watukosek fault system extends from the volcanic complex towards the NE of Java. Our results point out that the tectonic deformation of the region is characterized by a segmented fault system being part of a broader damage zone, rather than localized along a distinct fault plane.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: Clastic eruptions are the surface expression of piercement structures such as mud volcanoes or hydrothermal vent complexes and involve subsurface sediment remobilisation and fluid flow processes. During these eruptions, many different processes are involved over a wide range of temporal and physical scales, which makes it a highly challenging multi-phase and multi-processes system to model. Field studies on piercement structures rarely include monitoring and detailed descriptions of clastic eruptions, and only a few attempts have been made to model fluid flow during these events. Moreover, these models have usually only considered one or two dimensions and/or have a limited spatial resolution. In this paper, we summarise the elements that are relevant for modelling fluid flow during clastic eruption: the geometry of the system, the ascending material and the host rocks. We present the main challenges associated with the identification of processes and quantification of parameters. By analogy to magmatic systems, we suggest that the type of clastic eruptions could be controlled by the liquid-gas flow pattern in the conduit. Effusive eruptions could be explained in terms of annular flows, while slug or churn flows could be expected during explosive events. We also propose that the viscosity of liquid mud controls the presence of slug flows in the conduit. We then review the two main approaches that have been proposed to model the flow dynamics in the active conduits, Darcy and Navier-Stokes, as well as their key parameters and their validity. Finally, we discuss the limits of the previously employed models and suggest further work directions to improve our understanding of clastic eruptions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: The Sea of Galilee in northeast Israel is a freshwater lake filling a morphological depression along the Dead Sea Fault. It is located in a tectonically complex area, where a N-S main fault system intersects secondary fault patterns non-univocally interpreted by previous reconstructions. A set of multiscale geophysical, geochemical and seismological data, reprocessed or newly collected, was analysed to unravel the interplay between shallow tectonic deformations and geodynamic processes. The result is a neotectonic map highlighting major seismogenic faults in a key region at the boundary between the Africa/Sinai and Arabian plates. Most active seismogenic displacement occurs along NNW-SSE oriented transtensional faults. This results in a left-lateral bifurcation of the Dead Sea Fault forming a rhomb-shaped depression we named the Capharnaum Trough, located off-track relative to the alleged principal deformation zone. Low-magnitude (ML = 3–4) epicentres accurately located during a recent seismic sequence are aligned along this feature, whose activity, depth and regional importance is supported by geophysical and geochemical evidence. This case study, involving a multiscale/multidisciplinary approach, may serve as a reference for similar geodynamic settings in the world, where unravelling geometric and kinematic complexities is challenging but fundamental for reliable earthquake hazard assessments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: Marine transform faults and associated fracture zones (MTFFZs) cover vast stretches of the ocean floor, where they play a key role in plate tectonics, accommodating the lateral movement of tectonic plates and allowing connections between ridges and trenches. Together with the continental counterparts of MTFFZs, these structures also pose a risk to human societies as they can generate high magnitude earthquakes and trigger tsunamis. Historical examples are the Sumatra-Wharton Basin Earthquake in 2012 (M8.6) and the Atlantic Gloria Fault Earthquake in 1941 (M8.4). Earthquakes at MTFFZs furthermore open and sustain pathways for fluid flow triggering reactions with the host rocks that may permanently change the rheological properties of the oceanic lithosphere. In fact, they may act as conduits mediating vertical fluid flow and leading to elemental exchanges between Earth’s mantle and overlying sediments. Chemicals transported upward in MTFFZs include energy substrates, such as H2 and volatile hydrocarbons, which then sustain chemosynthetic, microbial ecosystems at and below the seafloor. Moreover, up- or downwelling of fluids within the complex system of fractures and seismogenic faults along MTFFZs could modify earthquake cycles and/or serve as “detectors” for changes in the stress state during interseismic phases. Despite their likely global importance, the large areas where transform faults and fracture zones occur are still underexplored, as are the coupling mechanisms between seismic activity, fluid flow, and life. This manuscript provides an interdisciplinary review and synthesis of scientific progress at or related to MTFFZs and specifies approaches and strategies to deepen the understanding of processes that trigger, maintain, and control fluid flow at MTFFZs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-05-28
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Talk] In: EGU General Assembly 2017, 23.-28.04.2017, Vienna, Austria .
    Publication Date: 2018-05-28
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...