GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Riedinger, Natascha; Brunner, B; Lin, Y S; Vossmeyer, Antje; Ferdelman, Timothy G; Jørgensen, Bo Barker (2010): Methane at the sediment–water transition in Black Sea sediments. Chemical Geology, 274(1-2), 29-37, https://doi.org/10.1016/j.chemgeo.2010.03.010
    Publication Date: 2024-01-20
    Description: We present high resolution profiles for the methane concentration and the carbon isotope composition of methane from surface sediments and from the sediment-water transition in the Black Sea. At shallow water sites methane migrates from the sediment into the water column, and the magnitude of this upward migrating flux depends on the depth of the sulfate-methane transition (SMT) in the sediment. The isotope data reveal that the sediments at shallow water sites are a source for methane depleted in 13C relative to the isotope composition of methane in the water column. At deep water sites the methane concentration first decreases with depth in the sediment to reach lowest values at the Unit I to Unit II transition. Below this transition the concentration increases again. Numerical modeling of methane concentration and isotope data shows that high methane oxidation rates occur in the surface sediment layer, indicating that the removal of methane in the surface sediments is not related to the anaerobic oxidation of methane coupled to sulfate reduction that occurs a few meters deep in the sediment, at the SMT. Instead, near-surface methane consumption in the euxinic Black Sea sediments appears to be related to lithological stratification. Furthermore, a map of the diffusive methane fluxes in the Black Sea surface sediments indicates that approximately half of the Black Sea seafloor acts as a sink for methane and thus limits the flux of methane to the atmosphere.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 15 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gao, Guang; Liu, Yameng; Li, Xinshu; Feng, Zhihua; Xu, Juntian; Lin, Y S (2016): An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress. PLoS ONE, 11(12), e0169040, https://doi.org/10.1371/journal.pone.0169040
    Publication Date: 2024-03-15
    Description: Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs). However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli's acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC) and elevated (HC) CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA) and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyll a; Chlorophyll a, standard deviation; Chlorophyll b; Chlorophyll b, standard deviation; Chlorophyta; Coast and continental shelf; Electron transport rate, relative; Electron transport rate, relative, standard deviation; EXP; Experiment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Lianyungang_OA; Light; Macroalgae; Net photosynthesis rate; Net photosynthesis rate, standard deviation; Non photochemical quenching; Non photochemical quenching, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Plantae; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Registration number of species; Salinity; Single species; Species; Temperate; Temperature, water; Treatment; Type; Ulva linza; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1264 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-03
    Description: Ocean margin sediments have been considered as important sources of dissolved organic carbon (DOC) to the deep ocean, yet the contribution from advective settings has just started to be acknowledged. Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM). In the sediment heated up to ~100 °C, we found unexpectedly low DOC concentrations in the pore waters, reflecting the combined effect of thermal desorption and advective fluid flow. Heating experiments suggested DOC production to be a rapid, abiotic process with the DOC concentration increasing exponentially with temperature. The high proportions of total hydrolyzable amino acids and presence of chemical species affiliated with activated hydrocarbons, carbohydrates and peptides indicate high reactivity of the DOM. Model simulation suggests that at the local scale, near-surface heating of sediment creates short and massive DOC discharge events that elevate the bottom-water DOC concentration. Because of the heterogeneous distribution of high heat flow areas, the expulsion of reactive DOM is spotty at any given time. We conclude that hydrothermal heating of young rift sediments alter deep-ocean budgets of bioavailable DOM, creating organic-rich habitats for benthic life.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-21
    Description: Dissolved organic matter (DOM) in marine sediment pore waters derives largely from decomposition of particulate organic matter and its composition is influenced by various biogeochemical and oceanographic processes in yet undetermined ways. Here, we determine the molecular inventory of pore water DOM in marine sediments of contrasting depositional regimes with ultrahigh-resolution mass spectrometry and complementary bulk chemical analyses in order to elucidate the factors that shape DOM composition. Our sample sets from the Mediterranean, Marmara and Black Seas covered different sediment depths, ages and a range of marine environments with different (i) organic matter sources, (ii) balances of organic matter production and preservation, and (iii) geochemical conditions in sediment and water column including anoxic, sulfidic and hypersaline conditions. Pore water DOM had a higher molecular formula richness than overlying water with up to 11,295 vs. 2114 different molecular formulas in the mass range of 299–600 Da and covered a broader range of element ratios (H/C = 0.35–2.19, O/C = 0.03–1.19 vs. H/C = 0.56–2.13, O/C = 0.15–1.14). Formula richness was independent of concentrations of DOC and TOC. Near-surface pore water DOM was more similar to water column DOM than to deep pore water DOM from the same core with respect to formula richness and the molecular composition, suggesting exchange at the sediment–water interface. The DOM composition in the deeper sediments was controlled by organic matter source, selective decomposition of specific DOM fractions and early diagenetic molecule transformations. Compounds in pelagic sediment pore waters were predominantly highly unsaturated and N-bearing formulas, whereas oxygen-rich CHO-formulas and aromatic compounds were more abundant in pore water DOM from terrigenous sediments. The increase of S-bearing molecular formulas in the water column and pore waters of the Black Sea and the Mediterranean Discovery Basin was consistent with elevated HS- concentrations reflecting the incorporation of sulfur into biomolecules during early diagenesis. Sulfurization resulted in an increased average molecular mass of DOM and higher formula richness (up to 5899 formulas per sample). In sediments from the methanogenic zone in the Black Sea, the DOM pool was distinctly more reduced than overlying sediments from the sulfate-reducing zone. Bottom and pore water DOM from the Discovery Basin contained the highest abundances of aliphatic compounds in the entire dataset; a large fraction of abundant N-bearing formulas possibly represented peptide and nucleotide formulas suggesting preservation of these molecules in the life inhibiting environment of the Discovery Basin. Our unique data set provides the basis for a comprehensive understanding of the molecular signatures in pore water DOM and the turnover of sedimentary organic matter in marine sediments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Porous, oxygen-ion-conducting ceramic membranes can have applications as supports for fuel cells, sensors, and thin membrane films, or as filters for membrane filtration. This paper reports on the preparation of unsupported and supported yttria-stabilized zirconia (YSZ) and yttria-doped bismuth oxide (BY) membranes with submicrometer pore sizes. Fluorite-structured BY powder that has been synthesized using the citrate method and commercial YSZ powder have been used to prepare stable aqueous suspensions. Unsupported and supported YSZ and BY membranes have been prepared from the stable suspensions of YSZ and BY. The supported BY membranes are crack free but contain small defects. Defect-free YSZ membranes that are supported on porous alumina have been prepared under controlled conditions. The average pore size is 100 nm, with a porosity of 57%, for an unsupported YSZ membrane (measured by mercury porosimetry), and 114 nm for a supported membrane (as estimated via helium permeation). The ionic conductivity of the YSZ membranes is 0.00044–0.01 S/cm in the temperature range of 600°–900°C, which is lower than that of dense YSZ disks.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 71 (1997), S. 3715-3717 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A technique for large enhancement of the diffraction efficiency of a guided-wave magnetooptic (MO) Bragg cell modulator using a nonuniform bias magnetic field in bismuth-doped yttrium iron garnet-gadolinium gallium garnet waveguide is reported. Since the velocity of propagation of the magnetostatic forward volume wave (MSFVW) varies with the bias magnetic field, a bias magnetic field of proper spatial distribution will modify its wave front and, thus, create a lensing effect upon the MSFVW. This lensing effect in turn reduces the angular beam spread of the MSFVW, and results in a higher MO Bragg diffraction efficiency. The experimental data obtained for the cases with uniform and nonuniform bias magnetic fields at the carrier center frequency range of 2.0–3.5 GHz have demonstrated a diffraction efficiency enhancement by two to six times. A diffraction efficiency as high as 70% has also been accomplished. Furthermore, the measured frequency responses indicate that the nonuniform bias magnetic field has had only a mild effect on the bandwidth of the MO Bragg cell modulator. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 75 (1999), S. 3551-3553 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An In0.5(Al0.66Ga0.34)0.5P/GaAs heterostructure field-effect transistor has been fabricated by metal-organic chemical vapor deposition. A turn-on voltage as high as 3.2 V along with an extremely low gate reverse leakage current of 69 μA/mm at VGD=−40 V are achieved. In addition, it is found that the device can be operated with gate voltage up to 1.5 V without significant drain current compression. These characteristics are attributed to the use of high Schottky barrier height, high band gap of In0.5(Al0.66Ga0.34)0.5P Schottky layer, and to the large conduction-band discontinuity at the In0.5(Al0.66Ga0.34)0.5P/GaAs heterojunction. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 34 (1995), S. 1189-1195 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 3824-3826 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The thermal stability of ZrO2/ZrSixOy and ZrO2/ZrSixOy/SiNx thin films on silicon was examined by synchrotron radiation ultraviolet photoemission spectroscopy. The ZrO2/ZrSixOy layer deposited by atomic-layer-controlled deposition is stoichiometric, uniform, amorphous, and has an equivalent oxide thickness of ∼1 nm and a dielectric constant of ∼18 with low leakage current. These ZrO2/ZrSixOy samples are thermally stable in vacuum up to 880 °C at which the film decomposed to form ZrSi2, the most thermodynamically stable metal silicide at a per zirconium atom basis, and the desorption of SiO(g) and ZrO(g) accounted for the greatly reduced oxygen and zirconium photoemission intensities. The thermal stability of ZrO2/ZrSixOy is improved to 950 °C when deposited on a 0.5–0.7 nm SiNx film. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 3124-3126 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A lattice-matched δ-doped In0.34Al0.66As0.85Sb0.15/InP heterostructure field-effect transistor (HFET) which provides large band gap (∼1.8 eV), high Schottky barrier height (φB〉0.73 eV), and large conduction-band discontinuity (ΔEc〉0.7 eV) has been proposed. In0.34Al0.66As0.85Sb0.15/InP heterostructures are shown to be type II heterojunctions with the staggered band lineup. This HFET demonstrates a output conductance of less than 1 mS/mm. Two-terminal gate-source breakdown voltage is more than 20 V with a leakage current as low as 170 μA at room temperature. High three-terminal off-state breakdown voltage as high as 36 V, and three-terminal on-state breakdown voltage as high as 18.6 V are achieved. The gate voltage swing is also significantly improved. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...