GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Type of Medium: Book
    Pages: IV, 375 S. , Ill., graph. Darst., Kt.
    Series Statement: Deep-sea research 47,1/2
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Type of Medium: Book
    Pages: S. 1 - 260 , Ill., graph. Darst.
    Series Statement: Marine ecology Vol. 31.2010,1
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Book
    Book
    Berlin : Blackwell-Wiss.-Verl.
    Type of Medium: Book
    Pages: 241 S , Ill., graph. Darst., Kt , 25 cm
    Series Statement: Marine ecology Vol. 28, 1 Special issue
    Language: English
    Note: Literaturangaben
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Type of Medium: Book
    Pages: S. 261 - 502 , Ill., graph. Darst
    Series Statement: Deep sea research 56.2009,6/7
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Frieder, Christina A; Gonzalez, Jennifer P; Levin, Lisa A (2014): Uranium in Larval Shells as a barometer of Molluscan Ocean Acidification Exposure. Environmental Science & Technology, 48(11), 6401-6408, https://doi.org/10.1021/es500514j
    Publication Date: 2024-03-15
    Description: As the ocean undergoes acidification, marine organisms will become increasingly exposed to reduced pH, yet variability in many coastal settings complicates our ability to accurately estimate pH exposure for those organisms that are difficult to track. Here we present shell-based geochemical proxies that reflect pH exposure from laboratory and field settings in larvae of the mussels Mytilus californianus and M. galloprovincialis. Laboratory-based proxies were generated from shells precipitated at pH 7.51 to 8.04. U/Ca, Sr/Ca, and multielemental signatures represented as principal components varied with pH for both species. Of these, U/Ca was the best predictor of pH and did not vary with larval size, with semidiurnal pH fluctuations, or with oxygen concentration. Field applications of U/Ca were tested with mussel larvae reared in situ at both known and unknown pH conditions. Larval shells precipitated in a region of greater upwelling had higher U/Ca, and these U/Ca values corresponded well with the laboratory-derived U/Ca-pH proxy. Retention of the larval shell after settlement in molluscs allows use of this geochemical proxy to assess ocean acidification effects on marine populations.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Barium/Calcium ratio; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Copper/Calcium ratio; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Lead/Calcium ratio; Magnesium/Calcium ratio; Mollusca; Mytilus californianus; Mytilus galloprovincialis; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Potentiometric titration; Replicate; Salinity; Sample ID; Single species; Species; Spectrophotometric; Strontium/Calcium ratio; Temperate; Temperature, water; Treatment; Uranium/Calcium ratio; Zinc/Calcium ratio; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 16740 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 32 (2001), S. 51-93 
    ISSN: 0066-4162
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Most of our knowledge of biodiversity and its causes in the deep-sea benthos derives from regional-scale sampling studies of the macrofauna. Improved sampling methods and the expansion of investigations into a wide variety of habitats have revolutionized our understanding of the deep sea. Local species diversity shows clear geographic variation on spatial scales of 100-1000 km. Recent sampling programs have revealed unexpected complexity in community structure at the landscape level that is associated with large-scale oceanographic processes and their environmental consequences. We review the relationships between variation in local species diversity and the regional-scale phenomena of boundary constraints, gradients of productivity, sediment heterogeneity, oxygen availability, hydrodynamic regimes, and catastrophic physical disturbance. We present a conceptual model of how these interdependent environmental factors shape regional-scale variation in local diversity. Local communities in the deep sea may be composed of species that exist as metapopulations whose regional distribution depends on a balance among global-scale, landscape-scale, and small-scale dynamics. Environmental gradients may form geographic patterns of diversity by influencing local processes such as predation, resource partitioning, competitive exclusion, and facilitation that determine species coexistence. The measurement of deep-sea species diversity remains a vital issue in comparing geographic patterns and evaluating their potential causes. Recent assessments of diversity using species accumulation curves with randomly pooled samples confirm the often-disputed claim that the deep sea supports higher diversity than the continental shelf. However, more intensive quantitative sampling is required to fully characterize the diversity of deep-sea sediments, the most extensive habitat on Earth. Once considered to be constant, spatially uniform, and isolated, deep-sea sediments are now recognized as a dynamic, richly textured environment that is inextricably linked to the global biosphere. Regional studies of the last two decades provide the empirical background necessary to formulate and test specific hypotheses of causality by controlled sampling designs and experimental approaches.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 346 (1990), S. 57-59 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Volcano 7, an inactive seamount7 at 13° 23' N, 102° 27' W, of 20-km diameter, rises from a depth of 3,400 m to 730 m. Its benthic and pelagic ecology were studied with submersible and shipboard sampling (including conductivity temperature depth (CTD) hydrocasts, water samples, box cores, ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 10 (1). pp. 229-260.
    Publication Date: 2020-06-11
    Description: Oxygen loss in the ocean, termed deoxygenation, is a major consequence of climate change and is exacerbated by other aspects of global change. An average global loss of 2% or more has been recorded in the open ocean over the past 50-100 years, but with greater oxygen declines in intermediate waters (100-600 m) of the North Pacific, the East Pacific, tropical waters, and the Southern Ocean. Although ocean warming contributions to oxygen declines through a reduction in oxygen solubility and stratification effects on ventilation are reasonably well understood, it has been a major challenge to identify drivers and modifying factors that explain different regional patterns, especially in the tropical oceans. Changes in respiration, circulation (including upwelling), nutrient inputs, and possibly methane release contribute to oxygen loss, often indirectly through stimulation of biological production and biological consumption. Microbes mediate many feedbacks in oxygen minimum zones that can either exacerbate or ameliorate deoxygenation via interacting nitrogen, sulfur, and carbon cycles. The paleo-record reflects drivers of and feedbacks to deoxygenation that have played out through the Phanerozoic on centennial, millennial, and hundred-million-year timescales. Natural oxygen variability has made it difficult to detect the emergence of a climate-forced signal of oxygen loss, but new modeling efforts now project emergence to occur in many areas in 15-25 years. Continued global deoxygenation is projected for the next 100 or more years under most emissions scenarios, but with regional heterogeneity. Notably, even small changes in oxygenation can have significant biological effects. New efforts to systematically observe oxygen changes throughout the open ocean are needed to help address gaps in understanding of ocean deoxygenation patterns and drivers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-02-08
    Description: As plastic waste pollutes the oceans and fish stocks decline, unseen below the surface another problem grows: deoxygenation. Breitburg et al. review the evidence for the downward trajectory of oxygen levels in increasing areas of the open ocean and coastal waters. Rising nutrient loads coupled with climate change—each resulting from human activities—are changing ocean biogeochemistry and increasing oxygen consumption. This results in destabilization of sediments and fundamental shifts in the availability of key nutrients. In the short term, some compensatory effects may result in improvements in local fisheries, such as in cases where stocks are squeezed between the surface and elevated oxygen minimum zones. In the longer term, these conditions are unsustainable and may result in ecosystem collapses, which ultimately will cause societal and economic harm.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 58 (5). pp. 1640-1656.
    Publication Date: 2019-09-23
    Description: During the discovery and description of seven New Zealand methane seep sites, an infaunal assemblage dominated by ampharetid polychaetes was found in association with high seabed methane emission. This ampharetid-bed assemblage had a mean density of 57,000 ± 7800 macrofaunal individuals m−2 and a maximum wet biomass of 274 g m−2, both being among the greatest recorded from deep-sea methane seeps. We investigated these questions: Does the species assemblage present within these ampharetid beds form a distinct seep community on the New Zealand margin? and What type of chemoautotrophic microbes fuel this heterotrophic community? Unlike the other macro-infaunal assemblages, the ampharetid-bed assemblage composition was homogeneous, independent of location. Based on a mixing model of species-specific mass and isotopic composition, combined with published respiration measurements, we estimated that this community consumes 29–90 mmol C m−2 d−1 of methane-fueled biomass; this is 〉 290 times the carbon fixed by anaerobic methane oxidizers in these ampharetid beds. A fatty acid biomarker approach supported the finding that this community, unlike those previously known, consumes primarily aerobic methanotrophic bacteria. Due to the novel microbial fueling and high methane flux rates, New Zealand's ampharetid beds provide a model system to study the influence of metazoan grazing on microbially mediated biogeochemical cycles, including those that involve greenhouse gas emissions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...