GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Climatic changes. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (617 pages)
    Edition: 1st ed.
    ISBN: 9783030822026
    Series Statement: The Anthropocene: Politik--Economics--Society--Science Series ; v.1
    DDC: 551.6
    Language: English
    Note: Paul J. Crutzen and the Anthropocene: A New Epoch in Earth's History -- Foreword -- Outline placeholder -- The Flight around Mount Everest -- Crutzen's Research Results -- Preface -- Rethinking Science for the Anthropocene: The Perspective of Geoanthropology -- Acknowledgements -- Introduction: Aims and Approach of This Book -- Contents -- Abbreviations -- List of Figures -- List of Tables -- List of Boxes -- 1 Paul J. Crutzen and the Path to the Anthropocene -- 1.1 Paul Crutzen: Biographical Notes -- 1.2 NOx, Supersonic Transports and Stratospheric Ozone -- 1.3 NOx, CFCs and the Discovery of the Ozone Hole -- 1.4 The 'Nuclear Winter'-Hypothesis -- 1.5 Geo-Engineering: A Tricky Scientific Debate to Handle Responsibility in the Anthropocene? -- References -- Part I Texts by Paul J. Crutzen and his Close Colleagues and Co-authors on the Anthropocene -- 2 The 'Anthropocene' (2000) -- References -- 3 Geology of Mankind (2002) -- Further Reading -- 4 The 'Anthropocene' (2002) -- 4.1 The Holocene -- 4.2 The Anthropocene -- 4.3 Conclusions -- References -- 5 Atmospheric Chemistry in the 'Anthropocene' (2002) -- 6 How Long Have We Been in the Anthropocene Era? (2003) -- References -- 7 Atmospheric Chemistry and Climate in the Anthropocene: Where Are We Heading? (2004) -- 7.1 Introduction -- 7.2 Pressing Problems Related to the Chemical Composition of the Atmosphere -- 7.2.1 The 'Greenhouse' Gases CO2, CH4, and N2O -- 7.2.2 Ozone, the Cleansing Effect of Hydroxyl in the Troposphere, and Acid Rain -- 7.2.3 Biomass Burning and the Consequences of Land-Use Change in the Developing World -- 7.2.4 Light-Absorbing and Light-Scattering Particles and Regional Surface Climate Forcing -- 7.3 Policy-Related Issues, Lessons to Be Learned -- 7.3.1 The 'Ozone Hole' -- 7.3.2 How Well Do We Know the Science of Climate Change? -- 7.4 Final Remark. , Appendix 7.1: The 'Anthropocene' -- Appendix 7.2: The Ozone Hole -- References -- 8 Earth System Dynamics in the Anthropocene (2004) -- 8.1 The Earth System in the Anthropocene -- 8.2 Climate Sensitivity -- 8.3 Earth System Geography in the Anthropocene -- 8.4 "Achilles' Heels" in the Earth System -- 8.4.1 Abrupt Changes in the Physical Earth System -- 8.4.2 Complexity in the Chemistry of the Atmosphere -- 8.4.3 Ecological Complexity and Earth System Functioning -- 8.4.4 Pandemics -- 8.4.5 Current Knowledge Base on Abrupt Changes -- 8.5 Systems of Models and Observations -- 8.5.1 The Current State-of-the-Art in Climate Projection -- 8.5.2 New Tools Required to Guide Policy in the Anthropocene -- 8.5.3 Further Developments in Earth System Modelling -- 8.5.4 Models of Biodiversity -- 8.6 Technological Fix and Substitution -- 8.7 Research Challenges -- 8.7.1 Climate Sensitivity -- 8.7.2 Earth System Geography -- 8.7.3 Abrupt Changes -- 8.7.4 Models and Observations -- 8.7.5 Technological Substitution -- References -- 9 The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature? (2007) -- 9.1 Introduction -- 9.2 Pre-anthropocene Events -- 9.3 The Industrial Era (ca. 1800-1945): Stage 1 of the Anthropocene -- 9.4 The Great Acceleration (1945-ca. 2015): Stage 2 of the Anthropocene -- 9.5 Stewards of the Earth System? (ca. 2015-?): Stage 3 of the Anthropocene -- References -- 10 Atmospheric Chemistry and Climate in the Anthropocene (2007) -- References -- 11 Fate of Mountain Glaciers in the Anthropocene (2011) -- 11.1 Summary -- 11.1.1 Receding Glaciers Require Urgent Responses -- 11.2 Specific Findings and Recommendations -- 11.2.1 Anthropocene: A New Geological Epoch -- 11.2.2 The Earth Is Warming and the Impacts of Climate Change Are Increasing -- 11.2.3 The Earth's Glaciers Are Retreating: Causes and Consequences. , 11.2.4 Avoiding 'Dangerous Anthropogenic Interference' Requires Clear and Binding Climate Targets -- 11.2.5 Rapid Mitigation Is Required If Warming and Associated Impacts Are to Be Limited -- 12 Living in the Anthropocene: Toward a New Global Ethos (2011) -- 13 The Anthropocene: From Global Change to Planetary Stewardship (2011) -- 13.1 People and the Planet: Humanity at a Crossroads in the Twenty-First Century -- 13.1.1 Provisioning Goods and Services -- 13.1.2 Supporting Services -- 13.1.3 Regulating Services -- 13.2 The Anthropocene: From Hunter-Gatherers to a Global Geophysical Force -- 13.3 Understanding Planetary Dynamics: Earth as Our Life Support System -- 13.4 The Twenty-First Century Challenge: Toward Planetary Stewardship -- 13.5 The Anthropocene From a Complex Systems Perspective -- 13.6 Conclusion - Key Messages -- References -- 14 Atmospheric Chemistry and Climate in the Anthropocene (2012) -- 14.1 Introduction -- 14.2 Changes in the Biosphere -- 14.3 Human Alterations of Global Biogeochemical Cycles -- 14.4 Atmospheric Chemistry -- 14.5 Climate in the Anthropocene -- 14.6 The Evidence of Climate Change -- 14.7 Mitigating Climate Change -- 14.7.1 Reductions in Anthropogenic Greenhouse Gas Emissions -- 14.7.2 Reductions in Greenhouse Gas Emissions from Energy Production -- 14.8 Climate Engineering -- 14.9 Summary -- References -- 15 Climate, Atmospheric Chemistry and Biogenic Processes in the Anthropocene (2012) -- 15.1 Climate, Atmospheric Chemistry and Biogenic Processes in the Anthropocene -- References -- 16 The Palaeoanthropocene - The Beginnings of Anthropogenic Environmental Change (2013) -- 16.1 The Anthropocene - Climate or Environment? -- 16.2 The Palaeoanthropocene -- 16.3 Studying the Palaeoanthropocene -- 16.3.1 Human Subsistence and Migration -- 16.3.2 Regional Palaeoclimate -- 16.3.3 Palaeoenvironmental Sciences. , References -- 17 Stratigraphic and Earth System Approaches to Defining the Anthropocene (2016) -- 17.1 Introduction -- 17.2 Historical Relationship Between Stratigraphy and Earth System Science -- 17.3 Unravelling Earth System Evolution From the Chronostratigraphic Record -- 17.3.1 Evolution of the Biosphere -- 17.3.2 Evolution of the Climate System -- 17.3.3 Paleocene-Eocene Thermal Maximum -- 17.3.4 Pliocene Epoch -- 17.3.5 The Quaternary Period: Complex-System Behaviour of the Climate -- 17.3.6 Biosphere-Climate Interaction-The Earth System -- 17.4 The Contemporary Period-A Changing Relationship -- 17.5 Defining the Anthropocene by Integrating Stratigraphic and Earth System Approaches -- 17.5.1 Stratigraphic Anthropocene -- 17.5.2 Earth System Anthropocene -- 17.6 The Future Trajectory of the Anthropocene -- 17.7 Conclusion -- References -- 18 Was Breaking the Taboo on Research on Climate Engineering via Albedo Modification a Moral Hazard, or a Moral Imperative? (2016/2017) -- 18.1 Introduction -- 18.2 The Framing in 2006 -- 18.2.1 The Policy Dilemma Framing -- 18.2.2 The Research Needs and Hazards Framing -- 18.3 Resulting Developments -- 18.4 Future Developments -- References -- 19 Declaration of the Health of People, Health of Planet and Our Responsibility-Climate Change, Air Pollution and Health Workshop (2017) -- 19.1 Statement of the Problem -- 19.2 Principal Findings -- 19.3 Proposed Solutions -- 19.4 End of Declaration -- 20 Transition to a Safe Anthropocene (2017), Foreword to Well Under 2 ℃: Fast Action Policies to Protect People and the Planet from Extreme Climate Change -- Part II Reflections and Review of Global Debate on the Anthropocene -- 21 The Anthropocene - Reflections (January 2018) -- References. , 22 The Anthropocene Concept in the Natural and Social Sciences, the Humanities and Law - A Bibliometric Analysis and a Qualitative Interpretation (2000-2020) -- 22.1 Introduction -- 22.1.1 Crutzen's Coining of the Anthropocene Concept in 2000 -- 22.1.2 When did the Anthropocene Epoch of Earth's History Start? -- 22.1.3 The Vote of the Anthropocene Working Group of 2019 -- 22.2 Analysing the Anthropocene Concept -- 22.2.1 Predecessors and Alternatives to the Anthropocene Concept -- 22.2.2 Three Less Promising Methodological Frameworks -- 22.2.3 A Bibliometric or Scientometric Analysis -- 22.3 Bibliometric Analysis of the Anthropocene Literature (May 2000-January 2021) -- 22.3.1 Publications on the Anthropocene Offered by Amazon -- 22.3.2 Anthropocene Literature in the World Catalogue -- 22.3.3 Indexing Companies (Web of Science and Scopus) -- 22.3.4 Anthropocene Texts Listed by Research Areas and Disciplines on the Web of Science and Scopus (2001-2020) -- 22.3.5 Anthropocene Texts Listed by Countries and Language on the Web of Science and Scopus (2001-2020) -- 22.3.6 Anthropocene Texts Listed by Type, Journals and Book Series on the Web of Science and Scopus (2001-2021) -- 22.3.7 Anthropocene Texts Listed by Authors and Editors on the Web of Science and Scopus (2001-2021) -- 22.3.8 Anthropocene Texts Listed by Organisations and Universities on the Web of Science and Scopus (2001-2021) -- 22.3.9 Websites on the Anthropocene - List of Hyperlinks -- 22.4 Bibliometric Analyses of the Anthropocene in the Literature Listed Above by Scientific Discipline -- 22.4.1 Four Phases of the Gradual Increase in the Anthropocene -- 22.4.2 The Anthropocene Concept in the Natural Sciences -- 22.4.3 The Anthropocene: An Emerging Concept in the Social Sciences: Common and Distinct Features -- 22.4.4 The Anthropocene: A Concept in the Humanities. , 22.4.5 The Anthropocene in National and International Law.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht ; Klima ; Atmosphäre ; Prognose ; Modell
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (16 Seiten, 213,99 KB)
    Language: German
    Note: Förderkennzeichen BMBF 01LP1128A - 01LP1128B. - Verbund-Nummer 01098226 , Autoren dem Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Zusammenfassungen in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Forschungsbericht
    Description / Table of Contents: Climate research, atmospheric research, summer school
    Type of Medium: Online Resource
    Pages: Online-Ressource (12 p., 42,4 Kb.)
    Edition: [Elektronische Ressource]
    Language: German
    Note: Contract BMBF 01 LA 9801 3. - Differences between the printed and electronic version of the document are possible , Also available as printed version , Systemvoraussetzungen: Acrobat Reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: Online-Ressource (5 S., 589 KB) , graph. Darst., Kt.
    Language: German
    Note: Förderkennzeichen BMBF 01LD0107. - Engl. Titel: Climate change due to external forcing (KLIMEX), subproject: direct and indirect radiative forcing by chemically active gases in a complex climate model , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Auch als gedr. Ausg. vorhanden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Report ; Forschungsbericht ; Klimaänderung ; Ozonverteilung ; Klima ; Modell
    Type of Medium: Book
    Pages: 24 S , graph. Darst
    Series Statement: Report / Max-Planck-Institut für Meteorologie 283
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-09-12
    Description: Supervolcano eruptions have occurred throughout Earth’s history and have major environmental impacts. These impacts are mostly associated with the attenuation of visible sunlight by stratospheric sulfate aerosols, which causes cooling and deceleration of the water cycle. Supereruptions have been assumed to cause so-called volcanic winters that act as primary evolutionary factors through ecosystem disruption and famine, however, winter conditions alone may not be sufficient to cause such disruption. Here we use Earth system model simulations to show that stratospheric sulfur emissions from the Toba supereruption 74,000 years ago caused severe stratospheric ozone loss through a radiation attenuation mechanism that only moderately depends on the emission magnitude. The Toba plume strongly inhibited oxygen photolysis, suppressing ozone formation in the tropics, where exceptionally depleted ozone conditions persisted for over a year. This effect, when combined with volcanic winter in the extra-tropics, can account for the impacts of supereruptions on ecosystems and humanity.
    Description: Stratospheric sulfur emissions from the Toba supereruption about 74,000 years ago suppressed ozone formation which caused severe tropical ozone layer depletion and enhanced solar ultraviolet radiation stress, according to Earth system model simulations.
    Description: King Abdullah University of Science and Technology (KAUST) https://doi.org/10.13039/501100004052
    Description: http://hdl.handle.net/10754/667404
    Description: https://github.com/SeregaOsipov/NASA-GISS-ModelE/releases/tag/toba_o3
    Description: https://simplex.giss.nasa.gov/snapshots/
    Keywords: ddc:551 ; Atmospheric chemistry ; Natural hazards ; Palaeoclimate ; Volcanology
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 443 (2006), S. 405-406 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Methane is a potent greenhouse gas — per molecule, more than 20 times as powerful as carbon dioxide. Moreover, when methane emissions rise, so too does the concentration of the pollutant ozone in the troposphere, the lowest layer of Earth's atmosphere. Methane also consumes hydroxyl radicals, ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 355 (1992), S. 339-342 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A concentration increase of an atmospheric gas that absorbs infrared radiation initially decreases the net flux of long-wave terrestrial radiation F (WirT2) to space. The Earth-atmosphere system responds to this with warming at the surface. The climate forcing per unit increase of a ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 20 (1995), S. 89-116 
    ISSN: 1573-0662
    Keywords: model ; orographic cloud ; sulfur ; nitrogen oxides ; heterogeneous oxidation ; iron catalysis ; Henry's law ; droplet size spectrum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A chemistry module has been incorporated into a Lagrangian type model that computes the dynamics and microphysics of an orographical cloud formed in moist air flowing over the summit of Great Dun Fell (GDF) in England. The cloud droplets grow on a maritime aerosol which is assumed to be an external mixture of sea-salt particles and ammonium-sulfate particles. The dry particle radii are in the range 10 nm〈r〈1 µm. The gas-phase chemical reaction scheme considers reactions of nitrogen compounds that are important at night. The treatment of scavenging of gases into the aqueous phase in the model takes into account the different solubilities and accommodation coefficients. The chemistry in the aqueous phase focusses on the oxidation of S(IV) via different pathways. Sensitivity analyses have been performed to investigate deviations from gas-liquid equilibria according to Henry's law and also to study the influence of iron and of nitrogen compounds on the aqueous-phase oxidation of dissolved SO2. When addressing these questions, special attention has been given to the dependence on the droplet size distribution and on the chemical composition of the cloud condensation nuclei on which the droplets have formed. It was found that the oxidation of S(IV) via a chain reaction of sulfur radicals can be important under conditions where H2O2 is low. However, major uncertainties remain with respect to the interaction of iron with the radical chain. It was shown that mixing of individual cloud droplets, which are not in equilibrium according to Henry's law, can result in a bulk sample in equilibrium with the ambient air. The dependence of the aqueous-phase concentrations on the size of the cloud droplets is discussed for iron, chloride and NO3.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 16 (19). pp. 12477-12493.
    Publication Date: 2019-02-01
    Description: The self-cleaning or oxidation capacity of the atmosphere is principally controlled by hydroxyl (OH) radicals in the troposphere. Hydroxyl has primary (P) and secondary (S) sources, the former mainly through the photodissociation of ozone, the latter through OH recycling in radical reaction chains. We used the recent Mainz Organics Mechanism (MOM) to advance volatile organic carbon (VOC) chemistry in the general circulation model EMAC (ECHAM/MESSy Atmospheric Chemistry) and show that S is larger than previously assumed. By including emissions of a large number of primary VOC, and accounting for their complete breakdown and intermediate products, MOM is mass-conserving and calculates substantially higher OH reactivity from VOC oxidation compared to predecessor models. Whereas previously P and S were found to be of similar magnitude, the present work indicates that S may be twice as large, mostly due to OH recycling in the free troposphere. Further, we find that nighttime OH formation may be significant in the polluted subtropical boundary layer in summer. With a mean OH recycling probability of about 67%, global OH is buffered and not sensitive to perturbations by natural or anthropogenic emission changes. Complementary primary and secondary OH formation mechanisms in pristine and polluted environments in the continental and marine troposphere, connected through long-range transport of O3, can maintain stable global OH levels.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...