GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-12-05
    Description: The drilling of the 10.5 m high Nori pingo that stands at 32 m asl in Grøndalen Valley (Spitsbergen) performed in April 2019 reached a depth of 21.8 m bs (core #13, starting from 42.5 m asl, 77.99483 °N, 14.59009 °E) and revealed 16.1 m thick massive ice. The core was obtained with a portable gasoline-powered rotary drilling rig (UKB 12/25, Vorovskiy Machine Factory, Ekaterinburg, Russia). The core pieces with diameter 112-76 mm were lifted for sampling to the surface every 30–50 cm. After documentation and cryolithological description core pieces were sealed in zip lock bags. Ice samples were split in two parts - one part for stable isotope analyses, another part for ion content measurement. They were kept frozen for transportation while sediment samples were kept unfrozen. Moisture content was analyzed in laboratory by measuring sediment samples weight before and after drying. The stable water isotope composition (δ18O and δD) of massive pingo ice was analyzed at the Climate and Environmental Research Laboratory (CERL, Arctic and Antarctic Research Institute, St. Petersburg, Russia) using a Picarro L2120- i analyzer. After every five samples the working standard (SPB-2, δ18O = -9.66 ‰ and δD = -74.1 ‰) was measured. SPB-2 is made of distilled St. Petersburg tap water and is calibrated against the International Atomic Energy Agency (IAEA) standards VSMOW-2 (Vienna Standard Mean Ocean Water 2), GISP (Greenland Ice Sheet Precipitation), and SLAP-2 (Standard Light Antarctic Precipitation 2). The reproducibility of the results is 0.08 ‰ for δ18O and 0.4 ‰ for δD and was assessed by re-measuring a random selection of 10% of the total samples. The measurement error is thus 1-2 orders of magnitude less than the natural isotopic variability of pingo ice, which is satisfactory for the purpose of this study. The δ18O and δD values are given as per mil (‰) difference to the VSMOW-2 standard. The deuterium excess (d) is calculated as d = δD - 8δ18O29. The ion content of sedimentary permafrost samples from core #13 was estimated after water extraction at the analytical laboratory of RAE-S, Barentsburg. The material was dried and sieved at 1 mm. About 20 g of the sediment were suspended in 100 ml of de-ionized water and filtered through 0.45 μm nylon mesh within 3 minutes after stirring. Electrical conductivity (EC, measured in μS cm-1) and pH values were estimated with a Mettler Toledo Seven Compact S 220. EC values were transformed automatically by the instrument into general ion content (mineralization) values given as mg L-1. Major anions and cations in the water extracts were analyzed by an ion chromatograph (Shimadzu LC-20 Prominence) equipped with the Shimadzu CDD-10AVvp conductometric detector and ion exchange columns for anions (Phenomenex Star-ion A300) and for cations (Shodex ICYS-50). Bicarbonate content was measured by a Shimadzu TOC-L analyzer via catalytic oxidizing at +680o C and subsequent infrared detecting. Melted pingo ice samples from core #13 and spring water samples were analyzed after filtration through 0.45 μm nylon mesh on the same equipment using the same techniques for pH, EC, and ion composition as for sedimentary permafrost samples. Analyses and research were aimed at determining major characteristics of the Nori pingo including its internal structure, groundwater source, and geochemical and isotopic stages of formation.
    Keywords: Ammonium; Bbg_13; Bicarbonate ion; Bromine; Calcium; Carbon, inorganic, total; Carbon, organic, particulate; Carbon, organic, total; Chloride; Conductivity, electrical; DEPTH, sediment/rock; Description; Deuterium excess; drilling; Dry mass; Fluoride; Grondalen_13; Grøndalen Valley, Svalbard; Hydrochemistry; Laboratory code/label; Lithologic unit/sequence; Magnesium; massive ice; Nitrate; Nitrite; Nitrogen, total; Nori; Number; Permafrost; pH; Phosphate; Phosphorus; Pingo; Portable drill, Drilling Technology Plant, UKB-12/25; Potassium; Salinity; Sample code/label; Sample mass; Sodium; Sodium and potassium ions; Spitsbergen; Stable isotopes; Sulfate; Water content, wet mass; Wet mass; δ18O, water; δ Deuterium, water
    Type: Dataset
    Format: text/tab-separated-values, 1289 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-12
    Description: This work summarizes the archived data of geocryological and hydrogeological conditions in the west of Nordenskiold Land on the Spitsbergen Archipelago. The historical data obtained in the Soviet period during coal exploration are reviewed together with the results of our own studies performed as part of the Russian Scientific Arctic Expedition on Spitsbergen (RAE-S) in 2016–2020. With respect to geocryology, the region is assigned to the zone of continuous permafrost. The thickness of rocks and sediments with temperatures below zero is about 100 m near the coast and increases to 540 m on watersheds. The mean annual ground temperature near the zero-amplitude depth varies from –3.6 to –2.2°C. Below this layer, the temperature curve in the top part of the section tends to deviate toward positive temperatures, reflecting the modern cycle of climate warming. From the hydrogeological point of view, the area belongs to the marginal zone of the West Spitsbergen cryoadartesian basin. Seawater intrusions near the coast form saline subpermafrost aquifers, including those with temperatures below zero, reflecting the seawater (sodium chloride) composition and hydraulic heads close to sea level. Fresh and slightly saline (sodium bicarbonate on the east coast of Grønfjorden and magnesium–calcium sulfate in gypsum-bearing deposits on the west coast) subpermafrost water with hydraulic heads reaching 100 m above sea level is fed by water-saturated ice in the deep layers of large glaciers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-11
    Description: It has been suggested that increasing freshwater discharge to the Arctic Ocean may also occur as submarine groundwater discharge (SGD), yet there are no direct observations of this phenomenon in the Arctic shelf seas. This study tests the hypothesis that SGD does exist in the Siberian-Arctic shelf seas but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The field-observational approach in the southeast Laptev Sea used a combination of hydrological (temperature, salinity), geological (bottom sediment drilling, geoelectric surveys) and geochemical (224Ra, 223Ra and 222Rn) techniques. Active SGD was documented in the vicinity of the Lena River delta with two different operational modes. In the first system, groundwater discharges through tectonogenic permafrost talik zones was registered in both wintertime and summertime seasons. The second SGD mechanism was cryogenic squeezing out of brine and water-soluble salts detected on the periphery of ice hummocks in the wintertime season. The proposed mechanisms of groundwater transport and discharge in the arctic land-shelf system is elaborated. Through salinity versus 224Ra and 224Ra/223Ra diagrams, the three main SGD-influenced water masses were identified and their end-member composition was constrained. Further studies should apply these techniques to a broader scale with the objective to reach an estimate of the relative importance of the SGD transport vector relative to surface freshwater discharge for both the water balance and aquatic components such as dissolved organic carbon, carbon dioxide, methane, and nutrients.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-23
    Description: Drilling of a 21.8-m-deep borehole on top of the 10.5-m-high Nori pingo that stands at 32 m asl in Grøndalen Valley (Spitsbergen) revealed a 16.1-m-thick massive ice enclosed by frozen sediments. The hydrochemical compositions of both the massive ice and the sediment extract show a prevalence of Na+ and Cl� ions throughout the core. The upper part of the massive ice (stage A) has low mineralization and shows an isotopically closed-system trend in δ18O and δD isotopes decreasing down-core. Stage B exhibits high mineralization and an isotopically semi-open system. The crystallographic structure of Nori pingo’s massive ice provides evidence of several large groundwater intrusions that support the defined formation stages. Analysis of local aquifers leads to suggest that the pingo was hydraulically sourced through a local fault zone by low mineralized sodium–bicarbonate groundwater of a Paleogene strata aquifer. This groundwater was enriched by sodium and chloride ions while filtering through marine valley sediments with residual salinity. The comparison between the sodium–chloride-dominated massive ice of the Nori pingo and the sodium–bicarbonate-dominated ice of the adjacent Fili pingo that stands higher up the valley may serve as an indicator for groundwater source patterns of other Nordenskiöld Land pingos.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...