GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-04-23
    Description: Oxygen minimum zones (OMZs) cover extensive areas of eastern boundary ocean regions and play an important role in the cycling of the essential micronutrient iron (Fe). The isotopic composition of dissolved Fe (dFe) in shelf and slope waters on the Senegalese margin was determined to investigate the processes leading to enhanced dFe concentrations (up to 2 nM) in this tropical North Atlantic OMZ. On the shelf, the delta Fe-56 value of dFe (relative to the reference material IRMM-014) was as low as -0.33 parts per thousand, which can be attributed to input of dFe from both reductive and nonreductive dissolution of sediments. Benthic inputs of dFe are subsequently upwelled to surface waters and recycled in the water column by biological uptake and remineralisation processes. Remineralised dFe is characterised by relatively high delta Fe-56 values (up to + 0.41 parts per thousand), and the contribution of remineralised Fe to the total dFe pool increases with distance from the shelf. Remineralisation plays an important role in the redistribution of dFe that is mainly supplied by benthic and atmospheric inputs, although dust inputs, estimated from dissolved aluminium concentrations, were low at the time of our study (2-9 nmol dFe m(-2) d(-1)). As OMZs are expected to expand as climate warms, our data provide important insights into Fe sources and Fe cycling in the tropical North Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-23
    Description: Constraints on the variability of chromium (Cr) isotopic compositions in the modern ocean are required to validate the use of Cr isotopic signatures in ancient authigenic marine sediments for reconstructing past levels of atmospheric and ocean oxygenation. This study presents dissolved Cr concentrations (Cr-T, where Cr-T = Cr(VI) + Cr(III)) and Cr isotope data (delta Cr-53) for shelf, slope and open ocean waters within the oxygen minimum zone (OMZ) of the eastern sub-tropical Atlantic Ocean. Although dissolved oxygen concentrations were as low as 44-90 mu mol kg(-1) in the core of the OMZ, there was no evidence for removal of Cr(VI). Nonetheless, there was significant variability in seawater delta Cr-53, with values ranging from 1.08 to 1.72 parts per thousand. Shelf Cr-T concentrations were slightly lower (2.21 +/- 0.07 nmol kg(-1)) than in open ocean waters at the same water depth (between 0 and 160 m, 2.48 +/- 0.07 nmol kg(-1)). The shelf waters also had higher delta Cr-53 values (1.41 +/- 0.14 parts per thousand compared to 1.18 +/- 0.05 parts per thousand for open ocean waters shallower than 160 m). This is consistent with partial reduction of Cr(VI) to Cr(III), with subsequent removal of isotopically light Cr(III) onto biogenic particles. We also provide evidence for input of relatively isotopically heavy Cr from sediments on the shelf. Intermediate and deep water masses (AAIW and NADW) show a rather limited range of delta Cr-53 values (1.19 +/- 0.09 parts per thousand) and inputs of Cr from remineralisation of organic material or re-oxidation of Cr (III) appear to be minimal. Authigenic marine precipitates deposited in deep water in the open ocean therefore have the potential to faithfully record seawater delta Cr-53, whereas archives of seawater delta Cr-53 derived from shelf sediments must be interpreted with caution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 111 (4). pp. 1438-1442.
    Publication Date: 2021-04-23
    Description: Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (∼0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north–south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial–temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-29
    Description: Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe)....
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-03-08
    Description: It has recently been demonstrated that hydrothermal vents are an important source of dissolved Fe (dFe) to the Southern Ocean. The isotopic composition ( 56 Fe) of dFe in vent fluids appears to be distinct from other sources of dFe to the deep ocean, but the evolution of 56 Fe during mixing between vent fluids and seawater is poorly constrained. Here we present the evolution of 56 Fe for dFe in hydrothermal fluids and dispersing plumes from two sites in the East Scotia Sea. We show that 56 Fe values in the buoyant plume are distinctly lower (as low as –1.19) than the hydrothermal fluids (–0.29), attributed to (1) precipitation of Fe sulfides in the early stages of mixing, and (2) partial oxidation of Fe(II) to Fe(III), 〉55% of which subsequently precipitates as Fe oxyhydroxides. By contrast, the 56 Fe signature of stabilized dFe in the neutrally buoyant plume is –0.3 to –0.5. This cannot be explained by continued dilution of the buoyant plume with background seawater; rather, we suggest that isotope fractionation of dFe occurs during plume dilution due to Fe ligand complexation and exchange with labile particulate Fe. The 56 Fe signature of stabilized hydrothermal dFe in the East Scotia Sea is distinct from background seawater and may be used to quantify the hydrothermal dFe input to the ocean interior.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...