GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 555-561 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High porosity nanocrystalline Si thin films have been deposited using a high density plasma approach at temperatures as low as 100 °C. These films exhibit the same unique properties, such as visible luminescence and gas sensitivity, that are seen in electrochemically etched Si (i.e., porous Si). The nanostructure consists of an array of rodlike columns normal to the substrate surface situated in a void matrix. We have demonstrated that this structure is fully controllable and have varied the porosity up to ∼90% (as derived from optical reflectance) by varying the deposition conditions. In particular, the impact of plasma power has been found to reduce porosity by increasing the nuclei density and therefore the areal density of columns. Humidity sensors have been demonstrated based on the enhanced conductivity of our films (up to 6 orders of magnitude) in response to increase in relative humidity. Depending on the porosity, the conductivity-relative humidity behavior of our films shows variations which can be correlated with the nanostructure. Also, these variations indicate that the dominant charge transport is limited by the dissociation of water into its ions at the column surfaces. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...