GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Publication Date: 2023-06-21
    Description: We provide an updated estimate of the annual‐mean, seasonal cycle and interannual variability of the transports and properties of the Weddell Sea Bottom Water (WSBW) plume in the northwestern Weddell Sea. For this we used a densely instrumented mooring array deployed across the continental slope between January 2017 and January 2019. We found that the annual‐mean WSBW transport is 3.4 ± 1.5 Sv, corresponding to a cross‐section area of 35 km2 and a maximum thickness of 203 m. The annual mean transport‐weighted properties of WSBW are −0.99°C (Θ), 34.803 g/kg (SA) and 28.44 kg/m3 (γn). The WSBW is characterized by 3 bottom‐intensified velocity cores, which display seasonal variations in flow speed and transport different varieties of WSBW. The seasonal peak of WSBW transport and density is reached in May (4.7 Sv, 28.443 kg m−3) while the minimum values are observed in February (2.8 Sv, 28.435 kg m−3). The coldest WSBW is found between March and May, and the warmest between August and October. The density decrease of WSBW observed in the austral autumn of 2018 can be explained by warmer ambient waters being entrained during the formation of WSBW. This was enabled by the weakening of the along‐shore winds associated with a positive Southern Annular Mode index, reinforced by a La Niña event in early 2018. The synchronous decrease of total WSBW transport and volume between September 2018 and February 2019 indicates a reduction in the export of the dense precursors of WSBW from the Weddell Sea continental shelf.
    Description: Plain Language Summary: The Meridional Overturning Circulation (MOC) redistributes heat and carbon dioxide in the world ocean. Thus, it plays an important role in the regulation of our planet's climate. The Weddell Sea is the main contributor to the deep branch of the MOC in the Southern Hemisphere. Despite the importance of this contribution, uncertainties still remain associated to the plume of dense waters transported along the continental slope of the Weddell Sea. To reduce these uncertainties, we analyzed the most densely instrumented mooring array deployed across the continental slope in the northwestern Weddell Sea. We found that this plume flows faster close to the seafloor and that it presents important seasonal and interannual variability. The Weddell Sea Bottom Water interannual variability is influenced by changes in the along‐shore winds driven by the phase of two important climate modes, the Southern Annular Mode and the El Niño‐Southern Oscillation, but also by changes in the export of the dense precursors of WSBW in its formation areas. Increasing our knowledge on the along‐slope plume variability and properties is important to better understand the causes behind the variability of the MOC observed further downstream.
    Description: Key Points: The Weddell Sea Bottom Water (WSBW) plume presents 3 velocity cores and a clear seasonal cycle, with maximum transports and densities in May and minimum in February. A +SAM, reinforced by a ‐ENSO, favors the warming of WSBW via a wind‐driven warming of the ambient waters entrained during its formation. We observed a marked decrease in WSBW density and transports between September 2018 and February 2019 compared to the previous year.
    Description: EU Horizon 2020 Research and Innovation Program
    Description: German Research Foundation
    Description: Alfred Wegener Institute Helmholtz‐Center
    Description: https://doi.org/10.5281/zenodo.7500163
    Keywords: ddc:551.46 ; Weddell Sea ; WSBW ; Meridional Overturning Circulation ; SAM ; ENSO ; deep‐water plume
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: This paper investigates new observations from the poorly understood region between the Kara and Laptev Seas in the Eastern Arctic Ocean. We discuss relevant circulation features including riverine freshwater, Atlantic-derived water, and polynya-formed dense water, emphasize Vilkitsky Strait (VS) as an important Kara Sea gateway, and analyze the role of the adjacent ∼250 km-long submarine Vilkitsky Trough (VT) for the Arctic boundary current. Expeditions in 2013 and 2014 operated closely spaced hydrographic transects and 1 year-long oceanographic mooring near VT's southern slope, and found persistent annually averaged flow of 0.2 m s−1 toward the Nansen Basin. The flow is nearly barotropic from winter through early summer and becomes surface intensified with maximum velocities of 0.35 m s−1 from August to October. Thermal wind shear is maximal above the southern flank at ∼30 m depth, in agreement with basinward flow above VT's southern slope. The subsurface features a steep front separating warm (–0.5°C) Atlantic-derived waters in central VT from cold (〈–1.5°C) shelf waters, which episodically migrates across the trough indicated by current reversals and temperature fluctuations. Shelf-transformed waters dominate above VT's slope, measuring near-freezing temperatures throughout the water column at salinities of 34–35. These dense waters are vigorously advected toward the Eurasian Basin and characterize VT as a conduit for near-freezing waters that could potentially supply the Arctic Ocean's lower halocline, cool Atlantic water, and ventilate the deeper Arctic Ocean. Our observations from the northwest Laptev Sea highlight a topographically complex region with swift currents, several water masses, narrow fronts, polynyas, and topographically channeled storms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley
    In:  Journal of Geophysical Research - Oceans, 118 . pp. 563-576.
    Publication Date: 2014-12-16
    Description: Oceanographic moorings and conductivity-temperature-depth (CTD) surveys from September 2009 to September 2010 are used to describe recent changes in the Laptev Sea hydrography and to highlight wind- and ice-driven surface Ekman transport as the mechanism to translate these changes from the outer- to the inner-shelf bottom waters. In February 2010, moored oceanographic instruments recorded a sudden increase in temperature (+0.8°C) and salinity (+ 〉3) near the bottom of the inner Laptev Sea shelf. Such warm and saline waters had not been previously observed on the inner shelf in winter. They likely originated from the basin and were first observed during a summer 2009 CTD survey in the northwestern shelf break region, subsequently spreading east and shoreward across the Laptev Sea shelf. The changes were introduced to the mooring site by the first of a series of bottom-intensified flow events with velocities reaching 20 cm s−1, topographically guided along a relic submarine river valley. Each of the flow events coincided with negative pressure anomalies at the mooring site and offshore-directed (upwelling-favorable) winds and ice drift. We suggest that the observations to first order resemble a simplified two-dimensional two-layered ocean, where offshore surface Ekman transport is compensated for by a barotropic shoreward response flow near the bottom. In this paper, we use one of the first comprehensive long-term Laptev Sea datasets to highlight ice-ocean-atmosphere interactions in early and late winter and discuss the role of freshwater, stratification, and ice mobility on under-ice circulation on the Laptev Sea shelf.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Hydrographic and stable isotope (δ18O) data from 4 summer surveys in the Laptev Sea are used to derive fractions of sea-ice meltwater and river water. Sea-ice meltwater fractions are found to be correlated to river water fractions. While initial heat of river discharge is too small to melt the observed 0-158 km3 of sea-ice meltwater, arctic rivers contain suspended particles (SPM) and colored dissolved organic material (CDOM) that preferentially absorb solar radiation. Accordingly heat content in surface waters is correlated to river water fractions. But in years when river water is largely absent within the surface layer absolute heat content values increase to considerably higher values with extended exposure time to solar radiation and sensible heat. Nevertheless no net sea-ice melting is observed on the shelf in years when river water is largely absent within the surface layer. The total freshwater volume of the central-eastern Laptev Sea (72-76°N, 122-140°E) varies between ~1000-1500 km3 (34.92 reference salinity). It is dominated by varying river water volumes (~1300-1800 km3) reduced by an about constant freshwater deficit (~350-400 km3) related to sea-ice formation. Net sea-ice melt (~109-158 km3) is only present in years with high river water budgets. Intermediate to bottom layer (〉25 salinities) contain ~60% and 30% of the river budget in years with low and high river budgets, respectively. The average mean residence time of shelf waters was ~2-3 years during 2007-2009.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-01
    Description: Snow crabs Chionoecetes opilio are quite productive at suitable temperatures, but can also be abundant in water cold enough to depress settlement of larvae, growth, and reproduction. In much of the northern Bering Sea, bottom water temperatures are below -1°C for most or all of the year. Crab pelagic larvae prefer to settle at temperatures above 0°C, so we found high densities of juveniles only where intruding warm currents deposited larvae in localized areas. After settlement, maturing crabs appeared to exhibit ontogenetic migration toward deeper, warmer water. Cold temperatures excluded key predators, but decreased fecundity by restricting females to small body size (with associated small clutches) and to breeding every 2 yr. Migration to warmer water may allow females to breed annually and to encounter more adult males needed to fertilize subsequent clutches. Because older males also emigrate, remaining adolescent males probably inseminate newly maturing females. Without localized intrusion of warmer currents, snow crabs might not persist at high densities in such cold waters. However, they are currently very abundant, and export many pelagic larvae and adults.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Hydrographic and stable oxygen isotope (H218O/H216O) sampling was carried out within the West New Siberian (WNS) coastal polynyas in the southern Laptev Sea in late winters 2008 and 2009. The impact of sea-ice formation on the water column was quantified by a salinity/{lower case delta}18O mass balance. Several stations had vertically homogeneous physical properties in April/May 2008 and featured polynya-formed local bottom water with elevated signals of brine released during sea-ice formation and elevated fractions of river water. The polynya-formed bottom water was fresher than surrounding bottom waters. At other stations salinity/{lower case delta}18O correlation showed well defined mixing lines for bottom and surface layers. In March/April 2009 surface waters were strongly influenced by Lena River water and local polynya activity with elevated brine signals reached to intermediate depth, but did not penetrate the bottom layer in the highly stratified water column. Inventory values of sea-ice formation were comparable in both years, but freshwater distributions from the preceding summers were different. Therefore, the observed difference in the impact of polynya activity on the water column is not primarily controlled by the amount of sea-ice formed during winter but by preconditioning from the preceding summer. Only in years when the river plume is mostly absent in the polynya region stratification is weak and allows winter sea-ice formation to reach the bottom layer. Thus summer stratification controls the influence of local polynya water on the shelf's bottom hydrography and, as bottom water is exported, impacts on the source water of shelf-derived halocline waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Sediment transport dynamics were studied during ice-free conditions under different atmospheric circulation regimes on the Laptev Sea shelf (Siberian Arctic). To study the interannual variability of suspended particulate matter (SPM) dynamics and their coupling with the variability in surface river water distribution on the Laptev Sea shelf, detailed oceanographic, optical (turbidity and Ocean Color satellite data), and hydrochemical (nutrients, SPM, stable oxygen isotopes) process studies were carried out continuously during the summers of 2007 and 2008. Thus, for the first time SPM and nutrient variations on the Laptev Sea shelf under different atmospheric forcing and the implications for the turbidity and transparency of the water column can be presented. The data indicate a clear link between different surface distributions of riverine waters and the SPM transport dynamics within the entire water column. The summer of 2007 was dominated by shoreward winds and an eastward transport of riverine surface waters. The surface SPM concentration on the southeastern inner shelf was elevated, which led to decreased transmissivity and increased light absorption. Surface SPM concentrations in the central and northern Laptev Sea were comparatively low. However, the SPM transport and concentration within the bottom nepheloid layer increased considerably on the entire eastern shelf. The summer of 2008 was dominated by offshore winds and northward transport of the river plume. The surface SPM transport was enhanced and extended onto the mid-shelf, whereas the bottom SPM transport and concentration was diminished. This study suggests that the SPM concentration and transport, in both the surface and bottom nepheloid layers, are associated with the distribution of riverine surface waters which are linked to the atmospheric circulation patterns over the Laptev Sea and the adjacent Arctic Ocean during the open water season. A continuing trend toward shoreward winds, weaker stratification and higher SPM concentration throughout the water column might have severe consequences for the ecosystem on the Laptev Sea shelf.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: Siberian river water is a first-order contribution to the Arctic freshwater budget, with the Ob, Yenisey, and Lena supplying nearly half of the total surface freshwater flux. However, few details are known regarding where, when, and how the freshwater transverses the vast Siberian shelf seas. This paper investigates the mechanism, variability, and pathways of the fresh Kara Sea outflow through Vilkitsky Strait toward the Laptev Sea. We utilize a high-resolution ocean model and recent shipboard observations to characterize the freshwater-laden Vilkitsky Strait Current (VSC), and shed new light on the little-studied region between the Kara and Laptev Seas, characterized by harsh ice conditions, contrasting water masses, straits, and a large submarine canyon. The VSC is 10-20 km wide, surface intensified, and varies seasonally (maximum from August to March) and interannually. Average freshwater (volume) transport is 500 ± 120 km3 a-1 (0.53 ± 0.08 Sv), with a baroclinic flow contribution of 50-90%. Interannual transport variability is explained by a storage-release mechanism, where blocking-favorable summer winds hamper the outflow and cause accumulation of freshwater in the Kara Sea. The year following a blocking event is characterized by enhanced transports driven by a baroclinic flow along the coast that is set up by increased freshwater volumes. Eventually, the VSC merges with a slope current and provides a major pathway for Eurasian river water toward the western Arctic along the Eurasian continental slope. Kara (and Laptev) Sea freshwater transport is not correlated with the Arctic Oscillation, but rather driven by regional summer pressure patterns.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: Continental slopes – steep regions between the shelf break and abyssal ocean – play key roles in the climatology and ecology of the Arctic Ocean. Here, through review and synthesis, we find that the narrow slope regions contribute to ecosystem functioning disproportionately to the size of the habitat area (∼6% of total Arctic Ocean area). Driven by inflows of sub-Arctic waters and steered by topography, boundary currents transport boreal properties and particle loads from the Atlantic and Pacific Oceans along-slope, thus creating both along and cross-slope connectivity gradients in water mass properties and biomass. Drainage of dense, saline shelf water and material within these, and contributions of river and meltwater also shape the characteristics of the slope domain. These and other properties led us to distinguish upper and lower slope domains; the upper slope (shelf break to ∼800 m) is characterized by stronger currents, warmer sub-surface temperatures, and higher biomass across several trophic levels (especially near inflow areas). In contrast, the lower slope has slower-moving currents, is cooler, and exhibits lower vertical carbon flux and biomass. Distinct zonation of zooplankton, benthic and fish communities result from these differences. Slopes display varying levels of system connectivity: (1) along-slope through property and material transport in boundary currents, (2) cross-slope through upwelling of warm and nutrient rich water and down-welling of dense water and organic rich matter, and (3) vertically through shear and mixing. Slope dynamics also generate separating functions through (1) along-slope and across-slope fronts concentrating biological activity, and (2) vertical gradients in the water column and at the seafloor that maintain distinct physical structure and community turnover. At the upper slope, climatic change is manifested in sea-ice retreat, increased heat and mass transport by sub-Arctic inflows, surface warming, and altered vertical stratification, while the lower slope has yet to display evidence of change. Model projections suggest that ongoing physical changes will enhance primary production at the upper slope, with suspected enhancing effects for consumers. We recommend Pan-Arctic monitoring efforts of slopes given that many signals of climate change appear there first and are then transmitted along the slope domain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...