GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-04
    Description: Highlights • UAV-based thermal imaging allows precise mapping of diffusive thermal water discharge. • High tidal ranges affect fluid flow and promote larger thermal anomaly. • The La Jolla thermal anomaly is caused by a discharge of 330 ± 44 L s−1 of thermal water. • The La Jolla advective heat output (40.5 ± 5.2 MWt) can power a desalinization plant. The exploration of unexploited geothermal resources is required to encourage the use of renewable energy. This study focuses on La Jolla beach, Ensenada, Mexico. The beach hosts a thermal anomaly with temperatures of up to 52 °C at the surface and up to 93 °C at 20 cm depth. The objectives were to: map the thermal anomaly, understand the impact of tides, quantify the thermal water discharge rate and heat output, and discuss a direct use of the energy. The mapping was performed with Unmanned Aerial Vehicles equipped with optical and thermal cameras at two different dates. Additional temperature measurements were performed with a thermocouple, while the total fluid discharge was estimated from flow measurements. A comparison between the campaigns indicated that the highest surface temperature area was more than three times larger in 2019 than in 2018 (259 m2 vs. 69 m2). Such change was due to the tidal range and associated hydrostatic pressure variations. The total thermal water discharge is 330 ± 44 L s−1, which corresponds to an advective heat output of 40.5 ± 5.2 MWt. The use of this energy in a Multi-Effect Distillation desalinization plant can contribute to cover the shortage of freshwater in Ensenada.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-22
    Description: The peripheral area of Stromboli Island, Italy, named “Scari”,was continuously studied between January 2009 and December 2010. Data on soil CO2 flux and the partial pressure of CO2 (pCO2) in equilibrium with the thermal aquifer linked to the magmatic system are presented. Soil CO2 fluxes range from 20 to 370 g m−2 d−1 and have been strongly affected by soil temperature variations. Soil CO2 flux data were filtered with respect to the soil temperature and the calculated values, called “residuals”, were considered to detect changes induced by the magmatic system. The pCO2 values change in a wide range from 0.03 to 0.6 (atm), showing rapid variations. The results of this study showthat in the volcanic peripheral area, the degassing process of soil CO2 is determined not only by the CO2 released directly from the magma but also by gas–water interactions in the aquifer. The aquifer is able to dissolve the high amount of CO2 discharged by the magmatic system. Moreover, the “residuals” of CO2 flux diffused from the soil show a delay on the order of ~1 month with respect to the pCO2 in equilibrium with the aquifer. The soil CO2 flux is therefore not directly linked to the uprising of magmatic CO2 but instead depends on the CO2 discharged fromthe aquifer, which buffers and modulates the volatile changes released by the magmatic system. © 2016 Elsevier B.V. All rights reserved
    Description: Istituto Nazionale di Geofisica e Vulcanologia – Palermo (INGV)
    Description: Published
    Description: 110-116
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Keywords: Soil CO2 flux ; Gas-water interaction ; pCO2 in water Volcano-hydrothermal system ; Volcano-hydrothermal system ; natural degassing in volcanic peripheral areas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-22
    Description: Since 2016, Stromboli volcano has shown an increase of both frequency and energy of the volcanic activity; two strong paroxysms occurred on 3 July and 28 August 2019. The paroxysms were followed by a series of major explosions, which culminated on January 2021 with magma overflows and lava flows along the Sciara del Fuoco. This activity was monitored by the soil CO2 flux network of Istituto Nazionale di Geofisica e Vulcanologia (INGV), which highlighted significant changes before the paroxysmal activity. The CO2 flux started to increase in 2006, following a long-lasting positive trend, interrupted by short-lived high amplitude transients in 2016–2018 and 2018–2019. This increasing trend was recorded both in the summit and peripheral degassing areas of Stromboli, indicating that the magmatic gas release affected the whole volcanic edifice. These results suggest that Stromboli volcano is in a new critical phase, characterized by a great amount of volatiles exsolved by the shallow plumbing system, which could generate other energetic paroxysms in the future.
    Description: Published
    Description: 169
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Stromboli volcano; paroxysmal activity; soil CO2 fluxes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-22
    Description: The geochemical behaviour of major elements, Fe, Al, Mn, and Rare Earth Elements (REE) was investi- gated in the “Laguna Verde” acidic crater lake of Azufral volcano (Colombia). The cold lake water (T close to 10 C) is sulphate-dominated, due to absorption and oxidation of H2S (pH 2.1e2.7, Eh 196e260 mV), and Na-enriched (Total Dissolved Solids 0.79 g L 1). The total amount of REE dissolved in the lake ranges from 3.3 to 9.1 ppb. The REE patterns normalized to the local rocks show a Light Rare Earth Elements (LREE) depletion quite constant in the 15 samples. Similar patterns were already found in the acidic sulphate springs of Nevado del Ruiz volcano-hydrothermal system, caused by the precipitation of alunite and jarosite, absorbing LREE and hence removing them from solution. Alunite and jarosite minerals are not oversaturated at chemical-physical conditions within the lake itself, but alunite becomes over- saturated for temperatures above z100 C, reigning in the underlying hydrothermal system. Water temperatures close to 75 C were found in the northern part of the lake. Coupling the distribution of REE in lake water (LREE depleted) and the saturation indexes, we suggest that the distribution of REE in the lake water is the result of the alunite precipitation in the northern part of the lake and/or in the deeper hydrothermal system. The acidic hydrothermal fluids mobilize the REE with contents up to z5 orders of magnitude higher than seawater; acidic-hydrothermal systems, such as acidic crater lakes, can hence be considered potential REE “reservoirs”.
    Description: Published
    Description: 65-74
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-22
    Description: Rare Earth Elements (REE; lanthanides and yttrium) are elements with high economic interest because they are critical elements for modern technologies. This study mainly focuses on the geochemical behavior of REE in hyperacid sulphate brines in volcanic-hydrothermal systems, where the precipitation of sulphate minerals occurs. Kawah Ijen lake, a hyperacid brine hosted in the Ijen caldera (Indonesia), was used as natural laboratory. ∑REE concentration in the lake water is high, ranging from 5.86 to 6.52 mg kg-1. The REE pattern of lake waters normalized to the average local volcanic rock is flat, suggesting isochemical dissolution. Minerals spontaneously precipitated in laboratory at 25 °C from water samples of Kawah Ijen were identified by XRD as gypsum. Microprobe analyses and the chemical composition of major constituents allow to identify possible other minerals precipitated: jarosite, Al-sulphate and Sr, Ba-sulphate. ∑REE concentration in minerals precipitated (mainly gypsum) range from 59.53 to 78.64 mg kg-1. The REE patterns of minerals precipitated normalized to the average local magmatic rock show enrichment in LREE. The REE distribution coefficient (KD), obtained from a ratio of its concentration in the minerals precipitated (mainly gypsum) and the lake water, shows higher values for LREE than HREE. KD-LREE/KD-HREE increases in the studied samples when the concentrations of BaO, MgO, Fe2O3, Al2O3, Na2O and the sum of total oxides (except SO3 and CaO) decrease in the solid phase. The presence of secondary minerals different than gypsum can be the cause of the distribution coefficient variations. High concentrations of REE in Kawah Ijen volcanic lake have to enhance the interest on these environments as possible REE reservoir, stimulating future investigations. The comparison of the KD calculated for REE after mineral precipitation (mainly gypsum) from Kawah Ijen and Poás hyperacid volcanic lakes allow to generalize that the gypsum precipitation removes the LREE from water.
    Description: Published
    Description: 140133
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Gypsum precipitation ; Rare Earth Elements ; Hyperacid crater lake ; Kawah Ijen volcano ; Poás volcano ; REE fractionation ; Geochemistry ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-22
    Description: Major, minor and rare earth elements were analyzed in the acid sulphate - chloride thermal springs associated to Puracé volcano – hydrothermal system. The waters of Puracé were classified in 2 different groups as a function of the physico-chemical parameters and element distributions. Group 1 is characterized by the highest pH (⁓ 3.5), an outlet temperature of ⁓ 81 °C and a strong depletion of Fe, Al, Si and Ba with respect to the isochemical dissolution of the average volcanic local rock. Group 2 waters have lower pH values ⁓ 1.9 and temperature (⁓ 48 °C) compared with Group 1. Moreover, Group 2 is not characterized by a typical pathway representing the congruent dissolution of the rock and shows a distribution of major and minor elements that is more close to the near-congruent dissolution of the average volcanic local rock with respect to Group 1. These geochemical features of major and minor elements allow to propose that the chemical composition of the waters of Group 1 is strongly affected by the precipitation of secondary minerals such as alunite, jarosite, kaolinite, barite and polymorphs of SiO2. The grouping of waters is also supported by the distribution of dissolved REE normalized to the average volcanic local rock. Group 1 shows REE patterns strongly depleted in light rare earth elements (LREE), typical of water that formed alunitic and/or kaolinitic rocks. On the contrary, Group 2 is characterized by flat patterns, in according to the near-congruent dissolution of the rocks. REE dissolved in waters of Puracé were compared with REE in the acidic waters of Nevado del Ruiz and Azufral Colombian volcanoes and with REE in minerals recognized in advanced argillic alteration (alunite, gypsum and kaolinite). Precipitation of secondary minerals is proposed as a common process depleting LREE in acidic sulphate – chlorine waters in volcano – hydrothermal systems. Furthermore, the chemical fractionation of the major and minor elements was interpreted together with the corresponding distributions of REE in order to trace the water – rock interaction processes. Saturation indexes of most common secondary minerals identified in advanced argillic alterations were calculated using PHREEQC software in a range of temperature from 25 to 250 °C. This geochemical approach allows to identify the possible mineral precipitation or dissolution of secondary minerals as well as the temperature at which the water reached equilibrium with a given set of minerals. In Group 1, the precipitation of secondary minerals LREE enriched (alunite minerals and kaolinite) was traced at temperature of precipitation higher than ⁓ 101 °C.
    Description: Published
    Description: 107106
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Puracé volcano Acidic waters Rare Earth elements fractionation Advanced argillic alteration Alunite Kaolinite ; 04.08. Volcanology ; 05. General ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-22
    Description: The critical role of rare earth elements (Lanthanides plus Yttrium; hereafter REE) in high-tech technologies and consequently their increasing demand from the industry, in addition to the capability of REE to trace water–rock interaction processes, boosted the study of REE in unconventional extreme environments. This study is focused on the geochemical behaviour of REE in the hyperacid sulphate-rich brine of the crater lake of Poás volcano (Costa Rica), where the precipitation of gypsum occurs. This system can hence be considered as a natural laboratory to evaluate the fractionation of REE between the lake water (mother brine) and the precipitating gypsum mineral. Total REE concentrations dissolved in waters range from 1.14 to 2.18 mg kg−1. Calculated distribution coefficients (KD) for REE between the gypsum and the mother brine indicate a preferential removal of the light REE (LREE) with respect to the heavy REE (HREE), with KD values mainly decreasing from La to Lu. During the observation period (2007–2009), the distributions of REE concentrations dissolved in lake water normalized to the average local volcanic rock show two different trends: i) LREE depleted patterns, and ii) flat patterns. The identification of the LREE depleted pattern is justified by the KD calculated in this study. We demonstrate that the precipitation of gypsum is able to strongly fractionate the REE in hyperacid sulphate-rich brine, inducing changes in REE concentrations and distributions over time. X-ray computed tomography imaging was performed on gypsum crystal (precipitated from the lake waters) to gain insights on crystal-scale processes possibly controlling the REE geochemistry, i.e. surface processes vs. structural substitution. Accordingly, the heavy metals and possibly the REE seem to be mainly located on the crystal surface rather than inside the crystal, suggesting that a surface process could be the major process controlling REE removal from the water to the crystal.
    Description: Published
    Description: 87-96
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Keywords: Poas volcano ; Water–rock interaction ; Hyperacid brine lake ; Rare earth elements ; Gypsum precipitation ; 04.08. Volcanology ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-22
    Description: Geochemical behaviour of rare earth elements (REE), Zr, andHfwas investigated in CO2-richwaters circulating in Pantelleria Island also including ‘Specchio di Venere’ Lakewithin a calderic depression. A wide range of total dissolved REE concentrationswas found (2.77–12.07 nmol L−1),with the highest contents in the lake. Themain REE complexes in the CO2-rich waters are [REE(CO3)2]− and [REECO3]+, showing changeable proportions as a function of pH. The REE normalized to post-Archean Australian Shale (PAAS) showed similar features with heavy REE (HREE) enrichments in CO2-rich waters collected from springs and wells, whereas a different REE pattern was found in the ‘Specchio di Venere’ Lake water with middle REE (MREE) enrichments. The PAAS normalized concentration ratios (LREE/HREE)N and (MREE/HREE)N in waters are b1, except for the lake water in which (MREE/HREE)N N 1. Positive Eu anomalies were found in the investigated waters owing to water–rock interactions with less evolved host rocks. Ce anomalies as a function of Eh values were recognized, with the highest Ce anomaly occurring in the lake water with respect to the CO2-rich waters. The Y/Ho and Zr/Hf molar ratios are higher in the investigated waters (except for lake water) than that in the local rocks, with values ranging from 35.4 to 77.9 and from 76.3 to 299, respectively. The precipitation of authigenic phases was considered to be responsible for the increase in the Y/Ho and Zr/Hf ratios owing to enhanced Hf and Ho removal with respect to Zr and Y. The REE patterns in the lake water show a similar shape (MREE-enriched and a positive Ce anomaly) as those found in the settling dust and in the desert varnish coating of the rocks in arid environments,which mainly contain Fe- and Mn-oxyhydroxides and clay minerals. Similarly, Y/Ho and Zr/Hf ratios in the ‘Specchio di Venere’ Lake (35.4 and 76.3, respectively) show a desert varnish signature. These data, coupled with the presence of iron oxyhydroxides and phyllosilicates in the shallowest water layer of the ‘Specchio di Venere’ Lake, verify the aeolian input from the Sahara Desert
    Description: Published
    Description: 1-11
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Rare earth elements ; Zirconium ; Hafnium ; CO2-rich waters ; Lake ; Aeolian input ; 05.09
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-07
    Description: Understanding the sources of potentially toxic elements (PTEs) in soils is a worldwide challenge that requires effective discrimination between geogenic and anthropogenic contributions, particularly in areas with certain geological complexity. This study aims to examine the chemical contents of 23 topsoil samples collected from the surroundings of a fossil fuel power plant in the village of Puerto Libertad (Sonoran Desert, Mexico). The study did not exclusively focus on the source identification of the priority PTEs to evaluate soil pollution. Furthermore, major oxides and immobile trace element (Zr, Hf, and REE: La→Lu) data were provided for a reliable assessment of the provenance of the soils. The relatively high SiO2 contents (65.26–75.42 wt%, anhydrous basis), the Post-Archean Australian Shale (PAAS)-normalized REE patterns, and the uniformity of the values of the Index of Compositional Variability (ICV = 1.11–2.72) and the Chemical Index of Alteration (CIA = 31.65–51.79) suggest that the soils were derived from intermediate to felsic source rocks, controlled by the local weathering of the parent bedrocks, under a low degree of chemical weathering conditions. The PTE data were treated following a robust workflow, which included the use of the enrichment factor (EF), the Spearman rank correlation (ρ), and multivariate statistical analyses allowed the generation of significant elemental associations and the identification of pools related either to the geological background or to anthropogenic activities. The results suggesting that Mo and Zn concentrations present a moderate anthropogenic influence while the concentrations of Pb, Sn, Cu, Cd, As, Cr, and Co are predominantly of geogenic origin. Vanadium (avg. EFV = 3.4) and Ni (avg. EFNi = 4.6) were the most enriched elements in the soils. Moreover, the highest values of the integrated Nemerow Pollution Index (PIN〉3) were recorded at the sampling stations closer to the village, suggesting point-source pollution by the emissions of the power station. Finally, in this paper is traced the extent of the particulate released into the atmosphere, which can be dispersed in a wide area into the Sonoran Desert.
    Description: Published
    Description: 105158
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Environmental geochemistry ; Geogenic sources ; Anthropogenic impact ; Provenance ; Power plant pollution ; Puerto libertad ; PTEs ; Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-07
    Description: Decades of geochemical monitoring at active crater lakes worldwide have confirmed that variations in major elements and physico-chemical parameters are useful to detect changes in volcanic activity. However, it is still arduous to identify precursors of single phreatic eruptions. During the unrest phase of 2009–2016, at least 679 phreatic eruptions occurred at the hyperacid and hypersaline crater lake Laguna Caliente of Poás volcano (Costa Rica). In this study, we investigate the temporal variations of Rare Earth Elements (REE) dissolved in Laguna Caliente in order to 1) scrutinize if they can be used as a new geochemical tool to monitor changes of phreatic activity at hyperacid crater lakes and 2) identify the geochemical processes responsible for the variations of REE concentrations in the lake. The total concentration of REE varies from 950 to 2,773 μg kg−1. (La/Pr)N-local rock ratios range from 0.93 to 1.35, and Light REE over Heavy REE (LREE/HREE)N-local rock ratios vary from 0.71 to 0.95. These same parameters vary in relation to significant changes in phreatic activity; in particular, the (La/Pr)N-local rock ratio increases as phreatic activity increases, while that of (LREE/HREE)N-local rock decreases when phreatic activity increases. REE concentrations and their ratios were compared with the variations of major elements and physico-chemical parameters of the lake. Calcium versus (La/Pr)N-local rock and versus (LREE/HREE)N-local rock ratios show different trends compared to the other major elements (Na, K, Mg, Al, Fe, SO4, and Cl). Moreover, a higher loss of Ca (up to 2,835 ppm) in lake water was found with respect to the loss of Al, K, and Na. This loss of Ca is argued to be due to gypsum precipitation, a process corroborated by the mass balance calculation simulating the precipitation of gypsum and the contemporaneous removal of REE from the lake water. The observed relations between REE, changes in phreatic activity, and the parameters commonly used for the monitoring of hyperacid volcanic lakes encourage investigating more on the temporal and cause-effect relationship between REE dynamics and changes in phreatic activity at crater lake-bearing volcanoes.
    Description: Published
    Description: 716970
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Rare Earth Elements ; Poas Volcano ; phreatic eruptions ; geochemical monitoring ; hyperacid volcanic lakes ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...