GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-04-05
    Print ISSN: 0143-1161
    Electronic ISSN: 1366-5901
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Taylor & Francis
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-26
    Print ISSN: 0143-1161
    Electronic ISSN: 1366-5901
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Taylor & Francis
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2234–2253, doi:10.1175/JPO-D-12-033.1.
    Description: Meridional velocity, mass, and heat transport in the equatorial oceans are difficult to estimate because of the nonapplicability of the geostrophic balance. For this purpose a steady-state model is utilized in the equatorial Indian Ocean using NCEP wind stress and temperature and salinity data from the World Ocean Atlas 2005 (WOA05) and Argo. The results show a Somali Current flowing to the south during the winter monsoon carrying −11.5 ± 1.3 Sv (1 Sv ≡ 106 m3 s−1) and −12.3 ± 0.3 Sv from WOA05 and Argo, respectively. In the summer monsoon the Somali Current reverses to the north transporting 16.8 ± 1.2 Sv and 19.8 ± 0.6 Sv in the WOA05 and Argo results. Transitional periods are considered together and in consequence, there is not a clear Somali Current present in this period. Model results fit with in situ measurements made around the region, although Argo data results are quite more realistic than WOA05 data results.
    Description: This study has been partly funded by the MOC Project (CTM 2008- 06438) and the Spanish contribution to the Argo network (AC2009 ACI2009-0998), financed by the Spanish Government and Feder.
    Description: 2013-06-01
    Keywords: Indian Ocean ; Subtropics ; Currents ; Ocean circulation ; Transport ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 57 (2010): 29-36, doi:10.1016/j.dsr.2009.10.003.
    Description: Using a variety of oceanographic data, including direct volume transports in the Florida 19 Strait, and Argo float profiles and drift velocities at 24 and 36N in the North Atlantic, inverse calculations are presented in which the net meridional transport, 20 down to a depth of approximately 1600 m, is estimated at both latitudes for a five year period 2003-2007. The upper ocean is divided into 7 layers using neutral density, and mass conservation constraints have been applied to a closed box bounded by these latitudes, including the Florida Strait. Ekman layer transports have been included in the top-most layer, and the inverse calculation has solved for changes from the initial reference velocities, Ekman and Florida Strait transports, given a priori estimates on the accuracy of each of these quantities. Solutions with and without transformations due to Mediterranean Water (MW) formation are made. Our results indicate that 1) time-averaged transport estimates derived from Argo have significant less eddy noise than individual hydrographic sections, 2) Argo drift velocities provide information to the inverse solution for the ocean interior, and 3) comparison of the total integrated interior mass transports in the thermocline waters for the period 2003-2007 with the previous estimates based on trans-ocean hydrographic sections shows that the Meridional Overturning Circulation has not significantly changed since 1957.
    Description: TJ would like to acknowledge support from NSF Grant OCE-0241354 and NOAA/CICOR grant NA17RJ1223.
    Keywords: Meridional overturning circulation ; Argo floats ; Objective analysis ; Box inverse model
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 4518–4538, doi:10.1002/2017JC012774.
    Description: The Atlantic Meridional Overturning Circulation (AMOC) is continually monitored along 26°N by the RAPID-MOCHA array. Measurements from this array show a 6.7 Sv seasonal cycle for the AMOC, with a 5.9 Sv contribution from the upper mid-ocean. Recent studies argue that the dynamics of the eastern Atlantic is the main driver for this seasonal cycle; specifically, Rossby waves excited south of the Canary Islands. Using inverse modeling, hydrographic, mooring, and altimetry data, we describe the seasonal cycle of the ocean mass transport around the Canary Islands and at the eastern boundary, under the influence of the African slope, where eastern component of the RAPID-MOCHA array is situated. We find a seasonal cycle of −4.1 ± 0.5 Sv for the oceanic region of the Canary Current, and +3.7 ± 0.4 Sv at the eastern boundary. This seasonal cycle along the eastern boundary is in agreement with the seasonal cycle of the AMOC that requires the lowest contribution to the transport in the upper mid-ocean to occur in fall. However, we demonstrate that the linear Rossby wave model used previously to explain the seasonal cycle of the AMOC is not robust, since it is extremely sensitive to the choice of the zonal range of the wind stress curl and produces the same results with a Rossby wave speed of zero. We demonstrate that the seasonal cycle of the eastern boundary is due to the recirculation of the Canary Current and to the seasonal cycle of the poleward flow that characterizes the eastern boundaries of the oceans.
    Description: RAPROCAN Project ; Instituto Español de Oceanografía; and as part of the SeVaCan project Grant Number: CTM2013-48695; Ministerio de Economía y Competividad; Apoyo al Personal Investigador en Formación
    Description: 2017-12-01
    Keywords: Canary Current ; African slope ; Seasonal cycle ; Atlantic Meridional Overturning Circulation ; Rossby wave
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 7237–7252, doi:10.1002/2015JC010969.
    Description: This study examines the seasonal cycle of the Atlantic Meridional Overturning Circulation (AMOC) and its eastern boundary contributions. The cycle has a magnitude of 6 Sv, as measured by the RAPID/MOCHA/WBTS project array at 26°N, which is driven largely by the eastern boundary. The eastern boundary variations are explored in the context of the regional circulation around the Canary Islands. There is a 3 month lag between maximum wind forcing and the largest eastern boundary transports, which is explained in terms of a model for Rossby wave generated at the eastern boundary. Two dynamic processes take place through the Lanzarote Passage (LP) in fall: the recirculation of the Canary Current and the northward flow of the Intermediate Poleward Undercurrent. In contrast, during the remaining seasons the transport through the LP is southward due to the Canary Upwelling Current. These processes are linked to the seasonal cycle of the AMOC.
    Description: The first author would like to thank the Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI) grant program of Apoyo al Personal Investigador en Formación. This study has been performed as part of the Instituto Español de Oceanografía RAPROCAN Project, and as part of the SeVaCan project (CTM2013-48695) from the Ministerio de Economía y Competividad. The 26°N array is a collaborative effort supported through the UK Natural Environment Research Council (NERC) RAPID-WATCH program, the US National Science Foundation (NSF) Meridional Overturning Circulation Heat-flux Array project, and the US National Oceanographic and Atmospheric Administration (NOAA) Western Boundary Time Series project.
    Description: 2016-05-07
    Keywords: AMOC ; Canary Basin ; Eastern boundary ; North Atlantic Subtropical Gyre ; RAPID ; EBC
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Science 13 (2017): 577-587, doi:10.5194/os-13-577-2017.
    Description: Decadal differences in the Falkland Plateau are studied from the two full-depth hydrographic data collected during the ALBATROSS (April 1999) and MOC-Austral (February 2010) cruises. Differences in the upper 100 dbar are due to changes in the seasonal thermocline, as the ALBATROSS cruise took place in the austral fall and the MOC-Austral cruise in summer. The intermediate water masses seem to be very sensitive to the wind conditions existing in their formation area, showing cooling and freshening for the decade as a consequence of a higher Antarctic Intermediate Water (AAIW) contribution and of a decrease in the Subantarctic Mode Water (SAMW) stratum. The deeper layers do not exhibit any significant change in the water mass properties. The Subantarctic Front (SAF) in 1999 is observed at 52.2–54.8° W with a relative mass transport of 32.6 Sv. In contrast, the SAF gets wider in 2010, stretching from 51.1 to 57.2° W (the Falkland Islands), and weakening to 17.9 Sv. Changes in the SAF can be linked with the westerly winds and mainly affect the northward flow of Subantarctic Surface Water (SASW), SAMW and AAIW/Antarctic Surface Water (AASW). The Polar Front (PF) carries 24.9 Sv in 1999 (49.8–44.4° W), while in 2010 (49.9–49.2° W) it narrows and strengthens to 37.3 Sv.
    Description: This study has been performed thanks to MOC2 (CTM2008-06438-C02-02/MAR) and Sevacan (CTM2013- 48695), financed by the Spanish Government.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-19
    Description: The Sea Surface Temperature in the Canary Current Large Marine Ecosystem (CCLME) for the 32 years in the period 1982-2013 shows a mean warming trend of 0.28°C decade-1. However, this overall warming trend shows significant changes due to the influence of the different dynamical regimes that coexist in the CCLME. Near the coast, in the area under the influence of the upwelling, between Cape Blanc and Cape Beddouza, the warming trend is not statistically different from zero. Near the coast, but in the waters under the influence of downwelling, between Cape Verde and Cape Blanc, the warming trend is higher (〉0.5°C decade-1), and statistically significant. In the oceanic regions, there is a statistically significant trend of 0.25°C decade-1, a trend that is also observed in waters shallower than the permanent thermocline (200-600 dbar). This warming rate is density compensate, with an increase in salinity of 0.02 decade-1. Neither the intermediate waters nor the upper deep waters show any statistically significant trend. The deep waters (2600-3600 dbar) in the oceanic waters north of the Canary Islands, show a warming rate of -0.01°C decade-1 and a freshening of -0.002 decade-1.
    Description: Published
    Keywords: Warming ; CCLME ; ASFA15::S::Sea surface temperature ; ASFA15::U::Upwelling ; ASFA15::D::Downwelling ; ASFA15::T::Thermocline
    Repository Name: AquaDocs
    Type: Report Section , Refereed
    Format: pp. 299-308
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-05-19
    Description: In the Canary Current Large Marine Ecosystem (CCLME) water masses of very different origin converge. In the upper layer, the North Atlantic Central Waters (NACW) and the South Atlantic Central Waters (SACW); at intermediate levels the Antarctic Intermediate Water (AAIW) and the warmer and saltier Mediterranean Water (MW); and at the deeper levels the North Atlantic Deep Water (NADW). Here we describe the origin and distribution of these waters masses.
    Description: Published
    Keywords: Central waters ; Thermocline waters ; Intermediate waters ; Deep waters ; Cape Verde Frontal Zone ; CCLME
    Repository Name: AquaDocs
    Type: Report Section , Refereed
    Format: pp. 73-79
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 10129, doi:10.1038/s41598-017-10974-y.
    Description: Transports of suspended particulate (POCsusp) and dissolved (DOC) organic carbon are inferred from a box-model covering the eastern boundary of the North Atlantic subtropical gyre. Corresponding net respiration rates (R) are obtained from a net organic carbon budget that is based on the transport estimates, and includes both vertical and lateral fluxes. The overall R in the mesopelagic layer (100–1500 m) is 1.6 ± 0.4 mmol C m−2 d−1. DOC accounts for up to 53% of R as a result of drawdown of organic carbon within Eastern North Atlantic Central Water (ENACW) that is entrained into sinking Mediterranean Overflow Water (MOW) that leads to formation of Mediterranean water (MW) at intermediate depths (~900 m). DOC represents 90% of the respired non-sinking organic carbon. When converted into oxygen units, the computed net respiration rate represents less than half the oxygen utilization rates (OUR) reported for the mesopelagic waters of the subtropical North Atlantic. Mesoscale processes in the area, not quantified with our approach, could account in part for the OUR differences observed between our carbon budget and other published studies from the North Atlantic, although seasonal or interannual variability could also be responsible for the difference in the estimates.
    Description: This research was supported by projects ORCA (CTM2005-04701-CO2-01), Malaspina (CSD2008-00077), HOTMIX (CTM2011-30010-C02) and FLUXES (CTM2015-69392-C3), financed by the Spanish “Plan Nacional de I + D”. YSF was supported by a Spanish fellowship from the Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI). EM has been partially supported by the Copernicus Marine Environment Monitoring Service (CMEMS) MedSUB project, and a post-doctoral grant from the Conselleria d’Educació, Cultura i Universitats del Govern de les Illes Balears (Mallorca, Spain) and the European Social Fund.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...