GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-11-06
    Description: The research cruise M187 with the RV METEOR sailed January 25 th to March 4 th 2023 from Walvis Bay to Walvis Bay (Namibia), with a focus on investigating the biogeochemical gradients that exist between the Benguela Upwelling zone and the South Atlantic Subtropical Gyre. In order to achieve this, the two specific foci of the research cruise were to (i) track upwelling filaments as they advect offshore and interact with the subtropical gyre, and (ii) perform a high-resolution transect from upwelling sites to the subtropical gyre. On the research cruise, two filaments were successfully mapped from cold water upwelling sites near or over the Namibian shelf through to warmer waters offshore. This was followed by a transect of twelve stations outwards into the subtropical gyre, reaching a maximum westward position of 5 °W. Sampling stations were conducted to a maximum depth of 1000 m and involved an array of deployments to investigate the biogeochemistry of the water column. Further nutrient addition bioassay experiments were conducted throughout the research cruise to assess the nutrients (co-)limiting to phytoplankton growth. Collectively our research will shed light on key mechanisms establishing the major oceanic biogeochemical gradients between upwelling and subtropical gyre regions, so that they can be included in models used to predict the impacts of climate change.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Bacterial metabolism largely drives the sequestration of refractory organic matter in the ocean. However, a lack of understanding exists regarding the abundance and reactivity of bacterial particulate organic matter (POM). Here we report the bacterial contributions to suspended POM collected in the oligotrophic Western Pacific Warm Pool (WPWP). Around 27% of particulate organic carbon (POC) and ∼39% of particulate nitrogen (PN) in the surface ocean were derived from bacteria. Most of the bacterial POM (∼87%) was labile or semi-labile, and ∼85% of bacterial POM was removed between depths of ∼100–300 m. Bacterial POM constituted only ∼8% and ∼13% of refractory POC and PN, respectively. The rapid cycling of bacterial POM in upper waters was likely related to oligotrophic conditions and facilitated by higher temperatures in the WPWP. Taken together, these observations indicate that bacterial POM plays a crucial role in supplying energy for bacterial respiration. Key Points We assess bacterial contributions to suspended particulate organic matter (POM) in the Western Pacific Warm Pool on the basis of D-amino acid biomarkers Bacterial organics constitute 27% of surface ocean particulate organic carbon (POC) and 39% of particulate nitrogen (PN), but majority (∼87%) is labile or semi-labile Rapid cycling of bacterial POM in the upper ocean results in a contribution of only ∼8% to refractory POC and ∼13% to PN
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The sources, distribution, and fate of particulate organic matter (POM) in estuaries are dynamic and complex, influenced by highly intensive human activities and high productivity. In this study, water samples were collected along the Changjiang Estuary salinity gradient and adjacent sea (CEAS) in February and May 2017. Particulate organic carbon (POC), particulate nitrogen (PN), the δ13C isotope values and major biochemical constituent (total particulate amino acids, TPAA) were measured. The concentrations of POC, PN, and TPAA showed an overall decreasing trend from the river end-member to the open sea; however, their maximum always occurred around the turbidity maximum zone (TMZ). Concentrations of POC and TPAA showed a negative correlation with salinity and a positive correlation with chlorophyll a, indicating that the variation in POM concentrations and composition was mainly controlled by both terrigenous input and in situ phytoplankton production. The δ13C values gradually increased from the river mouth to the open sea in both winter and spring, in contrast to the molar C/N, reflecting the transition from terrestrial POC to phytoplankton-derived fresh POC with increasing salinity. Major biochemical indicators of TPAA/POC (%) and the degradation index (DI), showed a gradual shift towards more bioactive POM with increasing salinity in spring, although low TPAA/POC (%) values appeared within the TMZ. In spring, POC reactivity was higher than in winter. The proportions of glycine (Gly) and serine (Ser) were higher in winter, indicating that POM had suffered extensive degradation. Based on a two end-member mixing model, the contribution of marine POC in spring (53 ± 14%) was significantly greater than in winter (39 ± 19%), indicating that phytoplankton-derived POM was dominant in spring, associated with the increase in phytoplankton biomass from winter to spring. Based on mass balance, a box model showed evidence of a net POC sink over the Changjiang estuary and its adjacent East China Sea shelf in both winter and spring, with a net POC budget of 20.49 ± 7.01 and 15.87 ± 6.57 kmol s−1, respectively. Results illustrate that the spatio-temporal distribution of POM varies distinctively and will further affect the variability in its composition and reactivity in the CEAS.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Concentrations of particulate organic carbon (POC) and total hydrolyzable amino sugars (THAS) were measured along a transect of the dynamic South Yellow Sea (SYS) to investigate the bioreactivity and bacterial reworking of particulate organic matter (POM). Results showed that POM bioavailability was linked with primary production, as revealed by the significant correlation between chlorophyll-a concentrations and the diagenetic indicator glucosamine/galactosamine (GlcN/GalN). Production of bioavailable POM could rapidly stimulate microbial activity, generating hot spots of heterotrophic alteration. Lower GlcN/GalN ratios (〈3) observed in the entire SYS indicate that POM underwent extensive microbial alteration. In particular, extremely low GlcN/GalN ratios (∼0.7) were found in the Yellow Sea Cold Water Mass, reflecting high bacterial alteration of POM. Estimates based on the bacterial biomarker muramic acid showed that on average ∼13% of POM in the SYS was of bacterial origin. Elevated bacterial contributions were found in both nearshore and offshore areas. Strong mixing in the nearshore and the presence of cyclonic eddies in offshore waters may increase the residence time of POM in the water column and thus promote bacterial transformation of POM. Overall, our findings indicate that bacterial reworking of POM varies with productivity and that the extensive bacterial transformation of the remaining POM observed in the water column probably enhances long-term carbon sequestration.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Compound‐specific isotope analysis has opened up a new realm for resolving the sources and transformation processes of marine organic matter. However, the stable carbon isotope patterns of amino sugars remain unknown. We examined δ 13 C of amino sugars in marine phytoplankton and heterotrophic bacteria, and the variations in amino sugar δ 13 C during 66‐d planktonic organic matter degradation experiments, to investigate the metabolic sources and transformations of amino sugars by bacterial reworking. The δ 13 C values of glucosamine (GlcN) and galactosamine (GalN) were comparable in heterotrophic bacteria (difference Δδ 13 C GlcN–GalN = 0.4–4.0‰) but pronouncedly different in phytoplankton (Δδ 13 C GlcN–GalN = 4.3–16.6‰), suggesting similar synthesis pathways of GlcN and GalN in bacteria that differed from phytoplankton. Compared to GlcN and GalN, bacteria preferentially use isotopically light organic compounds for muramic acid (MurA) synthesis. During simulated microbial degradation of organic matter, the δ 13 C difference between GlcN and GalN decreased from 5.8‰ on the initial day to 1‰ at a late stage in the experiment, but the difference between GlcN and MurA remained at 5.3‰. This difference is consistent with the pattern in cultured phytoplankton (average Δδ 13 C GlcN–GalN = 5.9‰ ± 1.4‰) and heterotrophic bacteria (average Δδ 13 C GlcN–MurA = 4.6‰ ± 3.4‰), indicating enhanced bacterial resynthesis as degradation proceeded. Based on the difference in δ 13 C among GlcN, GalN, and MurA, we propose a novel index of variation in amino sugar δ 13 C, representing amino sugar resynthesis, to describe the diagenetic state of organic matter. Together, these findings suggest that amino sugar δ 13 C can be used as a new tool to track heterotrophic processes of marine organic matter.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-23
    Description: Marginal seas influenced by large rivers are characterized by complex hydrodynamic and organic matter cycling processes. However, the impacts of hydrodynamics on the composition and reactivity of particulate organic matter (POM) remain unclear. Here we conducted a comprehensive study on the bulk, molecular and biological properties of suspended POM in the Changjiang Estuary and adjacent area subjected to strong currents, eddies as well as typhoons during spring and autumn. D/L‐enantiomers of particulate amino acids (PAA) were analyzed to evaluate the bioreactivity of POM and quantify bacterial‐derived organic carbon. We found that POM bioavailability as indicated by carbon‐normalized yields of PAA (PAA‐C%) reflected the ecosystem productivity. Relatively high PAA‐C% values (20−35%) were observed in productive areas influenced by Changjiang River plume, cyclonic eddies and typhoons, likely related to the enhanced nutrient availability arising from hydrodynamic processes. In contrast, the oligotrophic Taiwan Warm Current‐influenced regions featured relatively low POM bioavailability (PAA‐C% 〈 10%) despite typhoons facilitating water mixing. The PAA‐C% values showed a significant positive correlation with extracellular enzyme activity, indicating that bioavailable POM can rapidly stimulate heterotrophic transformation. Hot spots of elevated bioavailable POM showed high contributions of bacterial organic carbon. A large portion (∼2/3) of bacterial organic carbon was present in the form of bacterial detritus, suggesting that patches of these biological hot spots represent important sites of carbon sequestration. Together, our findings indicate that fresh POM production is largely controlled by nutrient supply driven by hydrodynamic processes, with important implications for carbon sequestration in the dynamic ocean margins. Plain Language Summary Marginal seas are subject to complex hydrodynamic processes and play an important role in carbon sequestration. Disentangling the linkages between hydrodynamics and organic carbon reactivity and composition is crucial to understanding the regional carbon cycle. Here we collected suspended particulate organic matter (POM) in the Changjiang Estuary and adjacent coastal areas. Based on the biomarker D/L‐amino acids, we assessed the bioavailability of POM and quantified the organic carbon originating from bacteria. We found that high bioactivity of POM occurred in productive Changjiang River plume, cyclonic eddy, and typhoon influenced areas. These hydrodynamic processes appear to increase nutrient availability, therefore promoting phytoplankton growth. Bioavailable POM can rapidly stimulate heterotrophic activity and facilitate the transformation of algal‐derived organic carbon to bacterial detritus, thus contributing to carbon sequestration. Our findings suggest that the production of bioavailable POM is largely controlled by hydrodynamically driven nutrient supply. Key Points We use D/L‐amino acids to assess the bioreactivity and bacterial origins of particulate organic matter (POM) in the dynamic Changjiang Estuary and adjacent area High bioavailability of POM occurs in productive regions affected by Changjiang River plume, cyclonic eddies and typhoons Hot spots of bioavailable POM represent important sites for carbon sequestration
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-25
    Description: The TetraEther indeX of 86 carbon atoms (TEX86) is widely used as a proxy to reconstruct past sea surface temperatures. Most current applications of TEX86 are primarily based on analyzing the composition of isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) that comprise TEX86 in sediments, with the assumption that the sedimentary isoGDGTs are mainly derived from the surface mixed layer. Here we report on the variations in the isoGDGT distribution, archaeal abundance and community through the water column of the Western Pacific Ocean, directly testing the export depth of isoGDGTs and constraining the temperature records of TEX86. Our data show that maximum isoGDGT concentrations occurred in subsurface waters (150–200 m) with maximum archaeal abundances. The ratio between isoGDGTs bearing 2 vs. 3 cyclopentane moieties, i.e. [2/3] ratio, increased with depth, which is likely related to the shift of the archaeal community from Ca. Nitrosopelagicus-dominance to norank_f__Nitrosopumilaceae-dominance. Models based on the [2/3] ratios in the water column predicted an average export depth of isoGDGTs to sediments of around 150–200 m, consistent with the robust relationship between the compiled sedimentary TEX86 and the annual mean subsurface temperature. Taken together, our findings support that TEX86 records subsurface rather than surface temperatures in the open ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...