GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2021-03-01
    Description: Fluids are key factors in volcanic and hydrothermal processes, and fluid circulation into, and release from, volcanoes take extraordinarily variegate forms. Volcanic gases are persistently dissipated by crater fumaroles and openvents, to sustain vigorous plumes in the most extreme cases. Meteoric fluids permeate through volcanic rocks and, when variably admixed with ascending magma-sourced fluids, drive the incessant activity of volcano-hosted hydrothermal systems. Less visible, but not less important, forms of degassing include the volatile release from soils and cold groundwater systems in volcano peripheries. Investigating the chemistry of volcanic-hydrothermal fluids and quantifying the associated volatile fluxes are crucial to understanding how volcanoes operate, and to fully constrain hydrothermal circulation in the subsurface. Volcano-hydrothermal fluids have been a matter of study, interest and fascination for Prof. Mariano Valenza over his entire lifetime. For more than four decades, Mariano Valenza, Professor of Geochemistry and Volcanology at Università di Palermo, investigated, with incessant enthusiasm, unique curiosity, and distinctive intellectual rigour, the chemistry of fluids in volcanic environments. Over the years, he contributed enormously to the development of fluid geochemistry by pioneering research in a variety of related fields, including -to name only a few- the redox properties of magmatic gases, their diffuse release through soils, and their continuous monitoring via instrumental networks. In doing so, he was an example for generations of scientists, leaving an indelible mark in the field of volcanic and hydrothermal fluid geochemistry. With this thematic set of fifteen papers -published in this and in the next issue of the Italian Journal of Geoscienceswe wish to properly honour Mariano Valenza’s memory. The collection of papers covers a variety of complementary topics and summarizes the state-of-the-art in the field of fluid geochemistry of volcanic and geothermal areas.
    Description: Published
    Description: 4V. Processi pre-eruttivi
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-16
    Description: Deep CO2 emissions characterize many nonvolcanic, seismically active regions worldwide, and the involvement of deep CO2 in the earthquake cycle is now generally recognized. However, no long-time records of such emissions have been published, and the temporal relations between earthquake occurrence and tectonic CO2 release remain enigmatic. Here, we report a 10-year record (2009-2018) of tectonic CO2 flux in the Apennines (Italy) during intense seismicity. The gas emission correlates with the evolution of the seismic sequences: Peaks in the deep CO2 flux are observed in periods of high seismicity and decays as the energy and number of earthquakes decrease. We propose that the evolution of seismicity is modulated by the ascent of CO2 accumulated in crustal reservoirs and originating from the melting of subducted carbonates. This large-scale, continuous process of CO2 production favors the formation of overpressurized CO2-rich reservoirs potentially able to trigger earthquakes at crustal depth.
    Description: Published
    Description: eabc2938
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: seismology ; gas geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-21
    Description: Lake Trasimeno is a shallow, endorheic lake located in central Italy. It is the fourth Italian largest lake and is one of the largest endorheic basins in western Europe. Because of its shallow depth and the absence of natural outflows, the lake, in historical times, alternated from periods of floods to strong decreases of the water level during periods of prolonged drought. Lake water is characterised by a NaCl composition and relatively high salinity. The geochemical and isotopic monitoring of lake water from 2006 to 2018 shows the presence of well-defined seasonal trends, strictly correlated to precipitation regime and evaporation. These trends are clearly highlighted by the isotopic composition of lake water (δ18O and δD) and by the variations of dissolved mobile species. In the long term, a progressive warming of lake water and a strong increase of total dissolved inorganic solids have been observed, indicating Lake Trasimeno as a paradigmatic example of how climate change can cause large variations of water quality and quantity. Furthermore, the rate of variation of lake water temperature is very close to the rate of variation of land-surface air temperature, LSAT, suggesting that shallow endorheic lakes can be used as a proxy for global warming measurements.
    Description: Published
    Description: ID 1319
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-07
    Description: Bagni San Filippo area is characterized by the discharge of thermal waters and deeply produced CO2-rich gases both from vents and soil diffuse degassing. The thermal waters are the results of the mixing between meteoric waters and hot fluids deriving from the condensation, at depth, of vapours uprising from a deep hydrothermal reservoir. This process gives rise to a relatively shallow thermal system at temperature close to 50°C, characterized by SO4-rich and Cl-poor waters and elevated PCO2 (~7 bar). Most of the incondensable gas of deep originated vapour is released as a free gas phase forming cold gas vents and localized spots of anomalous CO2 diffuse degassing. The location and the shape of these degassing zones are strongly controlled by the main tectonic structures of the area. Through detailed soil diffuse degassing surveys and hydrogeochemical modelling, we estimate at 226-326 t d-1 and at 965 t d-1 the deep CO2 emission and the amount of condensates discharged by the thermal springs, respectively. The thermal energy associated to the process results at ~ 29 MW, most of which (~ 25 MW) is associated with condensation occurring at depths greater than groundwater circulation.
    Description: Published
    Description: 383-397
    Description: 1TR. Georisorse
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-29
    Description: Bagni di Triponzo thermal springs, characterised by a Ca-SO4 composition and temperatures up to 30°C, are located in the eastern sector of Umbria region in the Umbria-Marche Apennine (central Italy). The region is characterised by a low geothermal gradient and low conductive heat flux and the composition of Triponzo thermal waters significantly differs with respect to the cold waters circulating in the surrounding areas. The origin of the heat transported by the waters of the Triponzo springs is mainly due to a deep component, characterised by high CO2 and He contents, coming from a deeper reservoir, rising along normal faults and mixing with infiltrating waters of meteoric origin. The total amount of thermal water discharged by the system is about 34 L s-1. According to the ternary SO4-2-F--HCO3- geoindicator for carbonate-evaporite reservoirs, the fluids at reservoir condition are charcterised by a partial pressure of CO2 about 0.5 bar and a temperature between 70-75°C whereas the Silica geothermometers give a temperature about 62°C. The computed thermal energy transported by advection and discharged at the surface by Triponzo springs is about 3.71×1011 ± 0.56×1011 J/day.
    Description: Published
    Description: 62-72
    Description: 1TR. Georisorse
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-05-29
    Description: Tectonically active regions are often characterized by large amounts of carbon dioxide degassing, and estimation of the total CO2 discharged to the atmosphere from tectonic structures, hydrothermal systems and inactive volcanic areas is crucial for the definition of present-day global Earth degassing. The carbon balance of regional aquifers is a powerful tool to quantify the diffuse degassing of deep inorganic carbon sources because the method integrates the CO2 flux over large areas. Its application to peninsular Italy shows that the region is characterized by specific CO2 fluxes higher than the baseline determined for the geothermal regions of the world, and that the amount of endogenous CO2 discharged through diffuse regional degassing (c. 2.1 × 1011 mol a−1) is the major component of the geological CO2 budget of Italy, definitely prevailing over the CO2 discharged by Italian active volcanoes and volcanoes with hydrothermal activity. Furthermore, the positive correlation between geothermal heat and deep CO2 dissolved in the groundwater of central Italy suggests that (1) the geothermal heat is transported into the aquifers by the same hot CO2-rich fluids causing the Italian CO2 anomaly and (2) the advective heat flow is the dominant form of heat transfer of the region.
    Description: Published
    Description: 408–416
    Description: 1TR. Georisorse
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-12-17
    Description: We review the methods based on the measurement of CO2 emissions for the computation of geothermal heat flow, both at a local (hydrothermal sites, a few km2) and regional scale (hundreds km2). At the local scale, we present and discuss the cases of the Latera caldera and Torre Alfina (Italy) geothermal systems. At Torre Alfina and Latera, the convection process sustains a CO2 emission of ~1 kg s–1 and ~4 kg s–1, and heat flows of 46 MW and 130 MW, respectively. At the regional scale, we discuss the case of the central Apennine (Italy), where CO2 mass and enthalpy balances of regional aquifers highlights a wide and strong thermal anomaly in an area of low conductive heat flow. Notably, the CO2/heat ratios computed for the central Apennines are very similar to those of the nearby geothermal systems of Latium and Tuscany, suggesting a common source of CO2‐rich fluids ascribed to the Tyrrhenian mantle.
    Description: PRIN2017‐2017LMNLAW “Connect4Carbon”
    Description: Published
    Description: 6590
    Description: 1TR. Georisorse
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...