GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2024-03-14
    Keywords: Calcium carbonate production of carbon; Calcium carbonate production of carbon, standard deviation; Coccolithophoridae, total; Cruise/expedition; DATE/TIME; DEPTH, water; Emiliania huxleyi; Incubation duration; LATITUDE; LONGITUDE; Method comment; Ocean and sea region; Percentage; Primary production of carbon; Primary production of carbon, standard deviation; Principal investigator; Reference/source; Station label; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 35037 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fragoso, Glaucia M; Poulton, Alex J; Yashayaev, Igor M; Head, Erica J H; Purdie, Duncan A (2016): Spring phytoplankton communities of the Labrador Sea (2005-2014): pigment signatures, photophysiology and elemental ratios. Biogeosciences Discussions, 43 pp, https://doi.org/10.5194/bg-2016-295
    Publication Date: 2024-05-28
    Description: The Labrador Sea is an ideal region to study the biogeographical, physiological and biogeochemical implications of phytoplankton communities due to sharp transitions of distinct water masses across its shelves and the central basin, intense nutrient delivery due to deep vertical mixing during winters and continual inflow of Arctic, Greenland melt and Atlantic waters. In this study, we provide a decadal assessment (2005?2014) of late spring/early summer phytoplankton communities from surface waters of the Labrador Sea based on pigment markers and CHEMTAX analysis, and their physiological and biogeochemical signatures. Diatoms were the most abundant group, blooming first in shallow mixed layers of haline-stratified Arctic shelf waters. Along with diatoms, chlorophytes co-dominated at the western end of the section (particularly in the polar waters of the Labrador Current (LC)), whilst Phaeocystis co-dominated in the east (modified polar waters of the West Greenland Current (WGC)). Pre-bloom conditions occurred in deeper mixed layers of the central Labrador Sea in May, where a mixed assemblage of flagellates (dinoflagellates, prasinophytes, prymnesiophytes, particularly coccolithophores, and chrysophytes/pelagophytes) occurred in low chlorophyll areas, succeeding to blooms of diatoms and dinoflagellates in thermally-stratified Atlantic waters in June. Light-saturated photosynthetic rates and saturation irradiance levels were higher at stations where diatoms were the dominant phytoplankton group (〉 70 %), as opposed to stations where flagellates were more abundant (from 40 % up to 70 %). Phytoplankton communities from the WGC (Phaeocystis and diatoms) had lower light-limited photosynthetic rates, with little evidence of photo-inhibition, indicating greater tolerance to a high light environment. By contrast, communities from the central Labrador Sea (dinoflagellates and diatoms), which bloomed later in the season (June), appeared to be more sensitive to high light levels. Ratios of accessory pigments (AP) to total chlorophyll a (TChl a) varied according to phytoplankton community composition, with polar phytoplankton (cold-water related) having lower AP to TChl a ratios. Phytoplankton communities associated with polar waters (LC and WGC) also had higher and more variable particulate organic carbon (POC) to particulate organic nitrogen (PON) ratios, suggesting the influence of detritus from freshwater input, derived from riverine, glacial and/or sea-ice meltwater. Long-term observational shifts in phytoplankton communities were not assessed in this study due to the short temporal frame (May to June) of the data. Nevertheless, these results have provided a baseline of current distributions and an evaluation of the biogeochemical role of spring phytoplankton communities in the Labrador Sea, which will improve our understanding of potential long-term responses of phytoplankton communities in high-latitude oceans to a changing climate.
    Keywords: (Diadinoxanthin + Diatoxanthin)/chlorophyll a ratio; 19-Butanoyloxyfucoxanthin; 19-Hexanoyloxyfucoxanthin; Alloxanthin; alpha-Carotene, beta,epsilon-Carotene; beta-Carotene, beta,beta-Carotene; Calculated; Campaign of event; Carbon, organic, particulate; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carotenoid pigments; Chlorophyll a; Chlorophyll a, Chlorophyta; Chlorophyll a, Chrysophyta; Chlorophyll a, Cryptophycea; Chlorophyll a, Cyanobacteria; Chlorophyll a, Diatoms; Chlorophyll a, Dinoflagellata; Chlorophyll a, Phaeocystis; Chlorophyll a, Prasinophyta; Chlorophyll a, Prymnesiophyceae; Chlorophyll a, total; Chlorophyll b; Chlorophyll c; Chlorophyll c1+c2; Chlorophyll c3; Chlorophyllide a; Cluster number; Comment; CTD, Sea-Bird; CTD/Rosette; CTD-RO; Date/Time of event; Davis Strait; Day of study; DEPTH, water; Diadinoxanthin; Diadinoxanthin + Diatoxanthin; Diatoxanthin; Diatoxanthin/(Diadinoxanthin + Diatoxanthin) ratio; Element analyser CHNS/O, Perkin-Elmer 2400 II; Event label; Fluorometer, Turner Design, TD-700; Fucoxanthin; Greenland Sea; Gulf of St. Lawrence; High Performance Liquid Chromatography (HPLC); HUD2005-16; HUD-2005-16_L10; HUD-2005-16_L11; HUD-2005-16_L12B_2; HUD-2005-16_L13; HUD-2005-16_L14; HUD-2005-16_L15; HUD-2005-16_L16B_2; HUD-2005-16_L17; HUD-2005-16_L18; HUD-2005-16_L19; HUD-2005-16_L20B_2; HUD-2005-16_L21; HUD-2005-16_L22; HUD-2005-16_L23; HUD-2005-16_L24; HUD-2005-16_L25B_2; HUD-2005-16_L26; HUD-2005-16_L27_2; HUD-2005-16_L3; HUD-2005-16_L4; HUD-2005-16_L5; HUD-2005-16_L6_2; HUD-2005-16_L7; HUD-2005-16_L8; HUD-2005-16_L9; HUD2006-019; HUD-2006-019_Bio1_2; HUD-2006-019_Bio4_2; HUD-2006-019_L1_2; HUD-2006-019_L11; HUD-2006-019_L14B_2; HUD-2006-019_L18B_2; HUD-2006-019_L24B_2; HUD-2006-019_L25B_2; HUD-2006-019_L4_2; HUD-2006-019_L4.10_2; HUD-2006-019_L4.5_2; HUD-2006-019_L9B_3; HUD2007-011; HUD-2007-011_L10B_2; HUD-2007-011_L11; HUD-2007-011_L12; HUD-2007-011_L13; HUD-2007-011_L14; HUD-2007-011_L14B_2; HUD-2007-011_L15; HUD-2007-011_L16; HUD-2007-011_L17; HUD-2007-011_L17B_2; HUD-2007-011_L18; HUD-2007-011_L2.10; HUD-2007-011_L2.12B_2; HUD-2007-011_L2.13; HUD-2007-011_L2.14; HUD-2007-011_L2.15.5; HUD-2007-011_L2.18; HUD-2007-011_L2.19_2; HUD-2007-011_L2.20; HUD-2007-011_L2.8B_2; HUD-2007-011_L20; HUD-2007-011_L21; HUD-2007-011_L21B_2; HUD-2007-011_L22; HUD-2007-011_L23; HUD-2007-011_L24; HUD-2007-011_L25; HUD-2007-011_L26; HUD-2007-011_L27_2; HUD-2007-011_L4.5; HUD-2007-011_L5; HUD-2007-011_L8; HUD2008-009; HUD-2008-009_L1; HUD-2008-009_L10B_2; HUD-2008-009_L11; HUD-2008-009_L12; HUD-2008-009_L13; HUD-2008-009_L14; HUD-2008-009_L15B_2; HUD-2008-009_L16; HUD-2008-009_L17; HUD-2008-009_L18; HUD-2008-009_L19B_2; HUD-2008-009_L2; HUD-2008-009_L20; HUD-2008-009_L21; HUD-2008-009_L22B_2; HUD-2008-009_L23; HUD-2008-009_L24B_2; HUD-2008-009_L25; HUD-2008-009_L3; HUD-2008-009_L4_2; HUD-2008-009_L5; HUD-2008-009_L6; HUD-2008-009_L7; HUD-2008-009_L8; HUD-2008-009_L9; HUD2009-015; HUD-2009-015_BIO1_2; HUD-2009-015_BIO2_2; HUD-2009-015_BIO3_2; HUD-2009-015_L10B_2; HUD-2009-015_L11B_2; HUD-2009-015_L12; HUD-2009-015_L13; HUD-2009-015_L14; HUD-2009-015_L15B_2; HUD-2009-015_L16B_2; HUD-2009-015_L17; HUD-2009-015_L18; HUD-2009-015_L19; HUD-2009-015_L20; HUD-2009-015_L20B; HUD-2009-015_L21; HUD-2009-015_L22; HUD-2009-015_L23; HUD-2009-015_L24; HUD-2009-015_L25; HUD-2009-015_L26; HUD-2009-015_L27; HUD-2009-015_L28_2; HUD-2009-015_L7.5; HUD-2009-015_L8; HUD-2009-015_L9; HUD2010-014; HUD-2010-014_L1; HUD-2010-014_L10_2; HUD-2010-014_L11; HUD-2010-014_L12; HUD-2010-014_L13; HUD-2010-014_L14B_2; HUD-2010-014_L15; HUD-2010-014_L16; HUD-2010-014_L17; HUD-2010-014_L18B_2; HUD-2010-014_L19; HUD-2010-014_L20; HUD-2010-014_L21; HUD-2010-014_L23B_2; HUD-2010-014_L24; HUD-2010-014_L25; HUD-2010-014_L26; HUD-2010-014_L27; HUD-2010-014_L28; HUD-2010-014_L2a; HUD-2010-014_L3a; HUD-2010-014_L4a; HUD-2010-014_L5a; HUD-2010-014_L6a_2; HUD-2010-014_L7; HUD-2010-014_L8; HUD-2010-014_L9; HUD2011-009; HUD-2011-009_A3; HUD-2011-009_A4; HUD-2011-009_AB_8; HUD-2011-009_BIO3_3; HUD-2011-009_L0; HUD-2011-009_L1; HUD-2011-009_L10; HUD-2011-009_L11; HUD-2011-009_L11.5B_2; HUD-2011-009_L12; HUD-2011-009_L13; HUD-2011-009_L14B; HUD-2011-009_L15; HUD-2011-009_L17; HUD-2011-009_L19B_2; HUD-2011-009_L2; HUD-2011-009_L20; HUD-2011-009_L21; HUD-2011-009_L22; HUD-2011-009_L23.5_2; HUD-2011-009_L23B_2; HUD-2011-009_L24; HUD-2011-009_L25; HUD-2011-009_L26; HUD-2011-009_L27; HUD-2011-009_L28; HUD-2011-009_L3; HUD-2011-009_L4; HUD-2011-009_L5; HUD-2011-009_L6; HUD-2011-009_L7_2; HUD-2011-009_L8; HUD-2011-009_L9.5; HUD2012-001; HUD-2012-001_L1; HUD-2012-001_L10; HUD-2012-001_L11; HUD-2012-001_L12; HUD-2012-001_L13; HUD-2012-001_L14; HUD-2012-001_L15B; HUD-2012-001_L16; HUD-2012-001_L17; HUD-2012-001_L17.4; HUD-2012-001_L18B; HUD-2012-001_L19; HUD-2012-001_L2; HUD-2012-001_L21B; HUD-2012-001_L22; HUD-2012-001_L23; HUD-2012-001_L23.5; HUD-2012-001_L24; HUD-2012-001_L25; HUD-2012-001_L27; HUD-2012-001_L28; HUD-2012-001_L29; HUD-2012-001_L3; HUD-2012-001_L30; HUD-2012-001_L4; HUD-2012-001_L5; HUD-2012-001_L6; HUD-2012-001_L7; HUD-2012-001_L8; HUD-2012-001_L9; HUD2013-008; HUD-2013-008_B1; HUD-2013-008_B2; HUD-2013-008_B3; HUD-2013-008_B4; HUD-2013-008_B5; HUD-2013-008_L10; HUD-2013-008_L11; HUD-2013-008_L12; HUD-2013-008_L13; HUD-2013-008_L14.2; HUD-2013-008_L14B2; HUD-2013-008_L15; HUD-2013-008_L16; HUD-2013-008_L17_2; HUD-2013-008_L17B2; HUD-2013-008_L18; HUD-2013-008_L19; HUD-2013-008_L21; HUD-2013-008_L22; HUD-2013-008_L23; HUD-2013-008_L25; HUD-2013-008_L26; HUD-2013-008_L27; HUD-2013-008_L28B2; HUD-2013-008_L7; HUD-2013-008_L8; HUD-2013-008_L9; Hudson; Initial slope of the photosynthesis-irradiance curve; James Clark Ross; JR302; JR302_R11; JR302_R22; JR302_R23; JR302_R28; JR302_R33; JR302_R38; JR302_R42; JR302_R48; JR302_R49; JR302_R5; JR302_R56; JR302_R6; JR302_R62; JR302_R71; JR302_R75; JR302_R78; Labrador Sea; Latitude of event; Light intensity at half-saturation irradiance; Light intensity at saturation irradiance; Longitude of event; Maximum photosynthetic efficiency per chlorophyll a biomass; Mixed layer depth; Nitrate; Nitrate/Phosphate ratio; Nitrogen, organic, particulate; Peridinin; Phaeophytin; Phosphate; Photoinhibition in carbon normalized to chlorophyll a; Pigments, total; Pigments, total accessory; Prasinoxanthin; Salinity; Sample ID; SEAL AutoAnalyzer 3 HR (AA3 HR); Silicate; Silicate/Nitrate ratio; South Atlantic Ocean; Station label; Stratification index; Temperature, water; Violaxanthin; Zeaxanthin + Lutein
    Type: Dataset
    Format: text/tab-separated-values, 14654 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-16
    Description: Arctic primary production is sensitive to reductions in sea ice cover, and will likely increase into the future. Whether this increased primary production (PP) will translate into increased export of particulate organic carbon (POC) is currently unclear. Here we report on the POC export efficiency during summer 2012 in the Atlantic sector of the Arctic Ocean. We coupled 234-thorium based estimates of the export flux of POC to onboard incubation-based estimates of PP. Export efficiency (defined as the fraction of PP that is exported below 100 m depth: ThE-ratio) showed large variability (0.09 ± 0.19–1.3 ± 0.3). The highest ThE-ratio (1.3 ± 0.3) was recorded in a mono-specific bloom of Phaeocystis pouchetii located in the ice edge. Blooming diatom dominated areas also had high ThE-ratios (0.1 ± 0.1–0.5 ± 0.2), while mixed and/or prebloom communities showed lower ThE-ratios (0.10 ± 0.03–0.19 ± 0.05). Furthermore, using oxygen saturation, bacterial abundance, bacterial production, and zooplankton oxygen demand, we also investigated spatial variability in the degree to which this sinking material may be remineralized in the upper mesopelagic (〈300 m). Our results suggest that blooming diatoms and P. pouchetii can export a significant fraction of their biomass below the surface layer (100 m) in the open Arctic Ocean. Also, we show evidence that the material sinking from a P. pouchetii bloom may be remineralized (〉100 m) at a similar rate as the material sinking from diatom blooms in the upper mesopelagic, contrary to previous findings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...