GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Raulf, Felix F; Fabricius, Katharina Elisabeth; Uthicke, Sven; de Beer, Dirk; Abed, Raeid M M; Ramette, Alban (2015): Changes in microbial communities in coastal sediments along natural CO2 gradients at a volcanic vent in Papua New Guinea. Environmental Microbiology, 17(10), 3678-3691, https://doi.org/10.1111/1462-2920.12729
    Publication Date: 2023-03-14
    Description: Natural CO2 venting systems can mimic conditions that resemble intermediate to high pCO2 levels as predicted for our future oceans. They represent ideal sites to investigate potential long-term effects of ocean acidification on marine life. To test whether microbes are affected by prolonged exposure to pCO2 levels, we examined the composition and diversity of microbial communities in oxic sandy sediments along a natural CO2 gradient. Increasing pCO2 was accompanied by higher bacterial richness and by a strong increase in rare members in both bacterial and archaeal communities. Microbial communities from sites with CO2 concentrations close to today's conditions had different structures than those of sites with elevated CO2 levels. We also observed increasing sequence abundance of several organic matter degrading types of Flavobacteriaceae and Rhodobacteraceae, which paralleled concurrent shifts in benthic cover and enhanced primary productivity. With increasing pCO2, sequences related to bacterial nitrifying organisms such as Nitrosococcus and Nitrospirales decreased, and sequences affiliated to the archaeal ammonia-oxidizing Thaumarchaeota Nitrosopumilus maritimus increased. Our study suggests that microbial community structure and diversity, and likely key ecosystem functions, may be altered in coastal sediments by long-term CO2 exposure to levels predicted for the end of the century.
    Keywords: Aluminium; Calcium; Carbon, organic, total; Carbon, total; DATE/TIME; Depth, bathymetric; DEPTH, sediment/rock; Dobu; EsaAla; Event label; Iron; LATITUDE; LONGITUDE; Magnesium; Manganese; Nitrogen, total; pH; Phosphorus; Potassium; Rubidium; Sample ID; Silicon; South Pacific; Strontium; Sulfur, total; Titanium; Upa-Upasina
    Type: Dataset
    Format: text/tab-separated-values, 198 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Smith, Joy N; Richter, Claudio; Fabricius, Katharina Elisabeth; Cornils, Astrid (2017): Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps. PLoS ONE, 12(5), e0175663, https://doi.org/10.1371/journal.pone.0175663
    Publication Date: 2023-03-18
    Description: Labidocera spp. abundances measured from samples collected in Papua New Guinea at natural carbon dioxide seeps. Abundances are compared between two reefs (Dobu and Upa-Upasina) at control and high-CO2 sites for two expeditions. Data includes abundances from net horizontal tows and emergence traps. Data also includes information on life stages and animal lengths, as well as number of oocytes and gut fullness in adult females.
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-18
    Keywords: Dobu; Event label; Length; Location; Sample ID; Sex; Site; South Pacific; Stage; Upa-Upasina; Width
    Type: Dataset
    Format: text/tab-separated-values, 13129 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-18
    Keywords: DATE/TIME; Dobu; Environment; Event label; Location; Number; Observation; Percentage; Sample ID; South Pacific; Species; Upa-Upasina
    Type: Dataset
    Format: text/tab-separated-values, 2480 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hassenrück, Christiane; Tegetmeyer, Halina; Ramette, Alban; Fabricius, Katharina Elisabeth (2017): Minor impacts of reduced pH on bacterial biofilms on settlement tiles along natural pH gradients at two CO2 seeps in Papua New Guinea. ICES Journal of Marine Science, 10 pp, https://doi.org/10.1093/icesjms/fsw204
    Publication Date: 2023-02-24
    Description: Bacterial biofilms provide cues for the settlement of marine invertebrates such as coral larvae, and are therefore important for the resilience and recovery of coral reefs. This study aimed to better understand how ocean acidification may affect the community composition and diversity of bacterial biofilms on surfaces under naturally reduced pH conditions. Settlement tiles were deployed at coral reefs in Papua New Guinea along pH gradients created by two CO2 seeps, and upper and lower tiles surfaces were sampled 5 and 13 months after deployment. Automated Ribosomal Intergenic Spacer Analysis were used to characterize more than 200 separate bacterial communities, complemented by amplicon sequencing of the bacterial 16S rRNA gene of 16 samples. The bacterial biofilm consisted predominantly of Alpha-, Gamma- and Deltaproteobacteria, as well as Cyanobacteria, Flavobacteriia and Cytophaga, whereas putative settlement-inducing taxa only accounted for a small fraction of the community. Bacterial biofilm composition was heterogeneous with approximately 25% shared operational taxonomic units between samples. Among the observed environmental parameters, pH only had a weak effect on community composition (R² ~ 1%) and did not affect community richness and evenness. In contrast, there were strong differences between upper and lower surfaces (contrasting in light exposure and grazing intensity). There also appeared to be a strong interaction between bacterial biofilm composition and the macroscopic components of the tile community. Our results suggest that on mature settlement surfaces in situ, pH does not have a strong impact on the composition of bacterial biofilms. Other abiotic and biotic factors such as light exposure and interactions with other organisms may be more important in shaping bacterial biofilms than changes in seawater pH.
    Keywords: BIOACID; BIOACID 2 PNG2013; Biological Impacts of Ocean Acidification; DIVER; M.V. Chertan; Papua_New_Guinea_CO2_vent; Sampling by diver
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-07-10
    Keywords: Calanopia spp.; Cruise/expedition; DATE/TIME; Dobu; Event label; Labidocera spp.; Pontella spp.; Pontellidae; Pontellidae indeterminata; Sample volume; Site; South Pacific; Upa-Upasina
    Type: Dataset
    Format: text/tab-separated-values, 1184 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-07-10
    Keywords: Coral cover, branching corals; Coral cover, other corals; Coral cover, rock and rubble; DATE/TIME; Labidocera spp.; Macroalgae, cover; Miscellaneous; Replicate; Sample ID; Sample volume; Sand, cover; Seagrass, cover; Site; South Pacific; Substrate type; Upa-Upasina
    Type: Dataset
    Format: text/tab-separated-values, 962 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Vogel, Nikolas; Fabricius, Katharina Elisabeth; Strahl, Julia; Noonan, Sam; Wild, Christian; Uthicke, Sven (2015): Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps. Limnology and Oceanography, 60(1), 263-275, https://doi.org/10.1002/lno.10021
    Publication Date: 2024-03-15
    Description: We investigated ecological, physiological, and skeletal characteristics of the calcifying green alga Halimeda grown at CO2 seeps (pHtotal ~ 7.8) and compared them to those at control reefs with ambient CO2 conditions (pHtotal ~ 8.1). Six species of Halimeda were recorded at both the high CO2 and control sites. For the two most abundant species Halimeda digitata and Halimeda opuntia we determined in situ light and dark oxygen fluxes and calcification rates, carbon contents and stable isotope signatures. In both species, rates of calcification in the light increased at the high CO2 site compared to controls (131% and 41%, respectively). In the dark, calcification was not affected by elevated CO2 in H. digitata, whereas it was reduced by 167% in H. opuntia, suggesting nocturnal decalcification. Calculated net calcification of both species was similar between seep and control sites, i.e., the observed increased calcification in light compensated for reduced dark calcification. However, inorganic carbon content increased (22%) in H. digitata and decreased (-8%) in H. opuntia at the seep site compared to controls. Significantly, lighter carbon isotope signatures of H. digitata and H. opuntia phylloids at high CO2 (1.01 per mil [parts per thousand] and 1.94 per mil, respectively) indicate increased photosynthetic uptake of CO2 over HCO3- potentially reducing dissolved inorganic carbon limitation at the seep site. Moreover, H. digitata and H. opuntia specimens transplanted for 14 d from the control to the seep site exhibited similar delta13C signatures as specimens grown there. These results suggest that the Halimeda spp. investigated can acclimatize and will likely still be capable to grow and calcify in inline image conditions exceeding most pessimistic future CO2 projections.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, inorganic, total; Carbon, organic, total; Carbon, organic total/Carbon, inorganic total; Carbon, total; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyta; CO2 vent; Coast and continental shelf; EXP; Experiment; Field experiment; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross photosynthesis rate, oxygen; Halimeda digitata; Halimeda opuntia; Light; Macroalgae; Net photosynthesis rate, oxygen; OA-ICC; Ocean Acidification International Coordination Centre; Papua_New_Guinea_OA; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Plantae; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Respiration; Respiration rate, oxygen; Salinity; Single species; Site; South Pacific; Species; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; δ13C
    Type: Dataset
    Format: text/tab-separated-values, 4151 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Johnson, Vivienne R; Russell, Bayden D; Fabricius, Katharina Elisabeth; Brownlee, Colin; Hall-Spencer, Jason M (2012): Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Global Change Biology, 18(9), 2792-2803, https://doi.org/10.1111/j.1365-2486.2012.02716.x
    Publication Date: 2024-03-15
    Description: Predicting the impacts of ocean acidification on coastal ecosystems requires an understanding of the effects on macroalgae and their grazers, as these underpin the ecology of rocky shores. Whilst calcified coralline algae (Rhodophyta) appear to be especially vulnerable to ocean acidification, there is a lack of information concerning calcified brown algae (Phaeophyta), which are not obligate calcifiers but are still important producers of calcium carbonate and organic matter in shallow coastal waters. Here, we compare ecological shifts in subtidal rocky shore systems along CO2 gradients created by volcanic seeps in the Mediterranean and Papua New Guinea, focussing on abundant macroalgae and grazing sea urchins. In both the temperate and tropical systems the abundances of grazing sea urchins declined dramatically along CO2 gradients. Temperate and tropical species of the calcifying macroalgal genus Padina (Dictyoaceae, Phaeophyta) showed reductions in CaCO3 content with CO2 enrichment. In contrast to other studies of calcified macroalgae, however, we observed an increase in the abundance of Padina spp. in acidified conditions. Reduced sea urchin grazing pressure and significant increases in photosynthetic rates may explain the unexpected success of decalcified Padina spp. at elevated levels of CO2. This is the first study to provide a comparison of ecological changes along CO2 gradients between temperate and tropical rocky shores. The similarities we found in the responses of Padina spp. and sea urchin abundance at several vent systems increases confidence in predictions of the ecological impacts of ocean acidification over a large geographical range.
    Keywords: Abundance; Aeolian_Island_Vulcano; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Calcite saturation state; Calcium carbonate; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Chlorophyll c per cell; Chromista; CO2 vent; Coast and continental shelf; Coverage; Echinodermata; Electron transport rate, relative; Event label; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; In situ sampler; ISS; Length; Macroalgae; Maximal electron transport rate, relative; Maximum photochemical quantum yield of photosystem II; Mediterranean Sea; Mediterranean Sea Acidification in a Changing Climate; MedSeA; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Padina pavonica; Padina sp.; Papua_New_Guinea; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Replicate; Salinity; Single species; South Pacific; Species; Station label; Temperate; Temperature, water; Tropical; Width
    Type: Dataset
    Format: text/tab-separated-values, 28736 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-15
    Description: In situ effects of ocean acidification are increasingly studied at submarine CO2 vents. Here we present a preliminary investigation into the water chemistry and biology of cool temperate CO2 vents near Whakaari–White Island, New Zealand. Water samples were collected inside three vent shafts, within vents at a distance of 2 m from the shaft and at control sites. Vent samples contained both seawater pH on the total scale (pHT) and carbonate saturation states that were severely reduced, creating conditions as predicted for beyond the year 2100. Vent samples showed lower salinities, higher temperatures and greater nutrient concentrations. Sulfide levels were elevated and mercury levels were at concentrations considered toxic at all vent and control sites, but stable organic and inorganic ligands were present, as deduced from Cu speciation data, potentially mediating harmful effects on local organisms. The biological investigations focused on phytoplankton, zooplankton and macroalgae. Interestingly, we found lower abundances but higher diversity of phytoplankton and zooplankton at sites in the direct vicinity of Whakaari. Follow-up studies will need a combination of methods and approaches to attribute observations to specific drivers. The Whakaari vents represent a unique ecosystem with considerable biogeochemical complexity, which, like many other vent systems globally, require care in their use as a model of 'future oceans'.
    Keywords: Alkalinity, total; Ammonium; Ammonium, standard deviation; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; CO2 vent; Coast and continental shelf; Community composition and diversity; Entire community; Equitability; Field measurement; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Nitrogen oxide; Nitrogen oxide, standard deviation; Number of species; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Phosphate, standard deviation; Salinity; Shannon Diversity Index; South Pacific; Station label; Temperate; Temperature, water; Type; Whakaari_White_Island
    Type: Dataset
    Format: text/tab-separated-values, 241 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...