GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-27
    Description: Due to the presence of genetically well-defined sex chromosomes, with a relatively restricted sex-determination region containing markers identified at the molecular level, the platyfish Xiphophorus maculatus is one of the best models for the positional cloning of a master sex-determining gene in fish. Both male and female heterogametes and three different types of sex chromosomes have been described in the platyfish, with several loci involved in pigmentation, melanoma formation, and sexual maturity closely linked to the master sex-determining locus. Using the melanoma-inducing oncogene Xmrk, its protooncogenic counterpart egfrb, as well as other X- and Y-linked molecular markers, bacterial artificial chromosome (BAC) contigs have been assembled for the sex-determining region of X. maculatus, which was mapped by fluorescent in situ hybridization to the subtelomeric region of the sex chromosomes. Initial sequence analysis of these contigs revealed several gene candidates and uncovered syntenies with different mammalian and chicken autosomes, supporting an independent origin of sex chromosomes in platyfish and tetrapods. Strikingly, the sex determination region of the platyfish is very instable and frequently undergoes duplications, deletions, and transpositions. This instability might be linked to the high genetic variability affecting sex determination and other sex-linked traits in Xiphophorus.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Scientific Committee on Antarctic Research
    In:  EPIC3Biogeographic Atlas of the Southern Ocean, Cambridge, Scientific Committee on Antarctic Research, pp. 327-362, ISBN: 978-0-948277-28-3
    Publication Date: 2014-09-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: The Dumont d’Urville Sea (East Antarctic region) has been less investigated for DNA barcoding and molecular taxonomy than other parts of the Southern Ocean, such as the Ross Sea and the Antarctic Peninsula. The Collaborative East Antarctic MARine Census (CEAMARC) took place in this area during the austral summer of 2007–2008. The Australian vessel RSV Aurora Australis collected very diverse samples of demersal and benthic organisms. The specimens were sorted centrally, and then distributed to taxonomic experts for molecular and morphological taxonomy and identification, especially barcoding. The COI sequences generated from CEAMARC material provide a sizeable proportion of the Census of Antarctic Marine Life barcodes although the studies are still ongoing, and represent the only source of sequences for a number of species. Barcoding appears to be a valuable method for identification within most groups, despite low divergences and haplotype sharing in a few species, and it is also useful as a preliminary taxonomic exploration method. Several new species are being described. CEAMARC samples have already provided new material for phylogeographic and phylogenetic studies in cephalopods, pycnogonids, teleost fish, crinoids and sea urchins, helping these studies to provide a better insight in the patterns of evolution in the Southern Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-19
    Description: Since the first molecular study of the suborder Notothenioidei in 1994, many phylogenetic studies have been published. Among these, those with a sufficient number of taxa have all suggested that the Nototheniidae, as currently defined, is monophyletic only with the inclusion of the Channichthyidae, Artedidraconidae, Bathydraconidae and Harpagiferidae. This is corroborated by more recent studies including more taxa, but in these studies either the number of nuclear markers or the number of taxa included remained low. We obtained sequences for a large sampling covering most nototheniid genera for five markers described previously for other samplings (COI, Rhodopsin retrogene, Pkd1, HECW2, and SSRP1) and one nuclear marker never used before in phylogenetic inference (PPM1d). The topology for the combined analysis of the nuclear coding genes, as well as the topology for SSRP1 (non-coding) and the combined analysis for all markers all support the paraphyly of Nototheniidae, the genus Notothenia (including Paranotothenia) is the sister group of the clade Channichthyidae, Artedidraconidae, Bathydraconidae and Harpagiferidae, and genus Gobionotothen is a sister group to both. As in previous studies, Trematomus, Lepidonotothen and Patagonotothen form a clade that also includes Indonotothenia cyanobrancha. The position of Pleuragramma antarctica, Dissostichus species and Aethotaxis mitopteryx remains unstable and dependant on markers and analyses.We therefore propose the inclusion of the four families of the High Antarctic clade in the Nototheniidae, and their transformation into subfamilies. We transfer Paranotothenia magellanica to the genus Notothenia, as Notothenia magellanica.
    Description: Published
    Repository Name: AquaDocs
    Type: Journal Contribution , Refereed
    Format: pp.49-58
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...