GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-04
    Description: The Atlantic meridional overturning circulation (AMOC) makes the strongest oceanic contribution to the meridional redistribution of heat. Here, an observation-based, forty-eight-month-long time series of the vertical structure and strength of the AMOC at 26.5°N is presented. From April 2004 to April 2008 the AMOC had a mean strength of 18.7 ±2.1 Sv with fluctuations of 4.8 Sv rms. The best guess of the peak-to-peak amplitude of the AMOC seasonal cycle is 6.7 Sv, with a maximum strength in autumn and a minimum in spring. While seasonality in the AMOC was commonly thought to be dominated by the northward Ekman transport, this study reveals that fluctuations of the geostrophic mid-ocean and Gulf Stream transports of 2.2 Sv and 1.7 Sv rms, respectively, are substantially larger than those of the Ekman component (1.2 Sv rms). A simple model based on linear dynamics suggests that the seasonal cycle is dominated by wind stress curl forcing at the eastern boundary of the Atlantic. Seasonal geostrophic AMOC anomalies might represent an important and previously underestimated component of meridional transport and storage of heat in the subtropical North Atlantic. There is evidence that the seasonal cycle observed here is representative of much longer intervals. Previously, hydrographic snapshot estimates between 1957 and 2004 had suggested a long-term decline of the AMOC by 8 Sv. This study suggests that aliasing of seasonal AMOC anomalies might have accounted for a large part of the inferred slowdown.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-31
    Description: We study the contribution of eastern-boundary density variations to sub-seasonal and seasonal anomalies of the strength and vertical structure of the Atlantic Meridional Overturning Circulation (AMOC) at 26.5° N, by means of the RAPID/MOCHA mooring array between April 2004 and October 2007. The major density anomalies are found in the upper 500 m, and they are often coherent down to 1400 m. The densities have 13-day fluctuations that are apparent down to 3500 m. The two strategies for measuring eastern-boundary density – a tall offshore mooring (EB1) and an array of moorings on the continental slope (EBH) – show little correspondence in terms of amplitude, vertical structure, and frequency distribution of the resulting basin-wide integrated transport fluctuations, implying that there are significant transport contributions between EB1 and EBH. Contrary to the original planning, measurements from EB1 cannot serve as backup or replacement for EBH: density needs to be measured directly at the continental slope to compute the full-basin density gradient. Fluctuations in density at EBH generate transport variability of 2 Sv rms in the AMOC, while the overall AMOC variability is 4.8 Sv rms. There is a pronounced deep-reaching seasonal cycle in density at the eastern boundary, which is apparent between 100 m and 1400 m, with maximum positive anomalies in spring and maximum negative anomalies in autumn. These changes drive anomalous southward upper mid-ocean flow in spring, implying maximum reduction of the AMOC, and vice-versa in autumn. The amplitude of the seasonal cycle of the AMOC arising from the eastern-boundary densities is 5.2 Sv peak-to-peak, dominating the 6.7 Sv peak-to-peak seasonal cycle of the total AMOC. Our analysis suggests that the seasonal cycle in density may be forced by the strong near-coastal seasonal cycle in wind stress curl.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The variability of the Atlantic Meridional Overturning Circulation (AMOC) has considerable impacts on the global climate system. Past studies have shown that changes in the South Atlantic control the stability of the AMOC and drive an important part of its variability. That is why significant resources have been invested in a South (S)AMOC observing system. In January 2017, the RV Maria S. Merian conducted the first GO‐SHIP hydrographic transect along the SAMOC‐Basin Wide Array (SAMBA) line at 34.5°S in the South Atlantic. This paper presents estimates of meridional volume, freshwater (MFT), and heat (MHT) transports through the line using the slow varying geostrophic density field and direct velocity observations. An upper and an abyssal overturning cell are identified with a strength of 15.64 ± 1.39 Sv and 2.4 ± 1.6 Sv, respectively. The net northward MHT is 0.27 ± 0.10 PW, increasing by 0.12 PW when we remove the observed mesoscale eddies with a climatology derived from the Argo floats data set. We attribute this change to an anomalous predominance of cold core eddies during the cruise period. The highest velocities are observed in the western boundary, within the Brazil and the Deep Western Boundary currents. These currents appear as a continuous deep jet located 150 km off the slope squeezed between two cyclonic eddies. The zonal changes in water masses properties and velocity denote the imprint of exchange pathways with both the Southern and the Indian oceans. Key Points: ● Overturning maximum is 15.64 ± 1.39 Sv; Meridional heat and freshwater transport are 0.27 ± 0.10 PW and 0.23 ± 0.02 Sv, respectively ● Excluding the mesoscale eddies from the section increased the meridional heat transport by 0.12 PW ● The distribution of water masses and currents reflects the favorable position of the section for observing
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...