GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-09
    Description: This work presents the first chemical and isotopic (δ13C-CO2, δ13C-CH4, 3He, 4He, 20Ne, 40Ar, 36Ar, δ18O, and δD) data for fluid discharges fromGuallatiri volcano, a remote and massive stratovolcano, which is considered as the second most active volcano of the Central Volcanic Zone (CVZ) in northern Chile. Fumarolic gases had outlet temperatures of between 80.2 and 265 °C, and showed a significant magmatic fluid contribution marked by the occurrence of SO2, HCl, and HF that are partially scrubbed by a hydrothermal aquifer. The helium isotope ratios (〈 3.2) were relatively low compared to those of other active volcanoes in CVZ, possibly due to contamination of the magmatic source by 4He-rich crust and/or crustal fluid addition to the hydrothermal reservoir. Geothermometry in the H2O-CO2-CO-H2-CH4 system suggests equilibrium temperatures of up to 320 °C attained in a vapor phase at redox conditions intermediate between those typical of hydrothermal and magmatic environments. Thermal springs located 12 km northwest of the volcano’s summit had outlet temperatures of up to 50.1 °C, neutral to slightly basic pH, and a sodium bicarbonate composition, typical of distal fluid discharges in volcanic systems. Cold springs at the base of the volcanic edifice, showing a calcium sulfate composition, were likely produced by interaction of shallow meteoric water with CO2- andH2S-rich gases. A geochemical conceptual model was constructed to graphically represent these results, which can be used as an indication for future geochemical monitoring and volcanic hazard assessment.
    Description: Published
    Description: id 57
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-12
    Description: Urban lakes have become increasingly important in the planning of urban ecology, green infrastructure and green areas in European cities. This paper describes the chemical, isotope and microbial features of Lake Bullicante, a small artificial lake located within the urban area of the city of Rome. It has an anthropogenic origin due to excavation works that intercepted the underlying aquifer, giving rise to a water body. The lake area is 7.000 m2, with a maximum depth of 7 m and located on the distal deposits of the Alban Hills Volcanic District in an area named "Acqua Bullicante" (i.e. Bubbling Water), where degassing phenomena were historically recorded. The proximity of this volcanic district motivated the study on Lake Bullicante as a potential open-air laboratory to trace possible degassing phenomena in a highly urbanized area. A preliminary geochemical and microbial sampling survey was carried out in winter 2018. Samples were collected along a vertical profile of the lake from the surface to the maximum depth. Major, minor, trace elements, dissolved gases and stable isotopes (δD-H2O, δ18O- H2O, δ13C-CO2) were analyzed, along with the analysis of 87Sr/86Sr ratio. The microbial community characteristics were analysed by epifluorescence microscopy (CARD-FISH) and flow cytometry. The chemical composition and water isotopes suggest that lake water has a meteoric origin and is related to a Ca-HCO3 shallow aquifer hosted in volcanic rocks. This is confirmed by both the 87Sr/86Sr ratio of lake water, which falls in the range of values of Alban Hills volcanites, and the chemical-isotopic composition of neighboring wells. A relatively high concentration of dissolved CO2, its isotopic signature (δ^13C-CO2 20‰ V-PDB), and the high content in organic matter (DOC 10-30 mg/L) suggest for the lake a eutrophication state with denitrification also occurring. Considering the relatively high concentrations of dissolved CO2, an external input of carbon dioxide cannot be completely excluded and as a consequence, not even the hypothesis of mixing processes between biotic and inorganic CO2. This makes further investigations necessary especially during the summer, when the lake is stratified. A summer survey could be also useful to better understand the microbial processes into the lake, its eutrophication evolution and health status, and to plan eventual proper remediation strategies, providing important tools to the local administration and stakeholders to improve, protect and preserve this ecological niche.
    Description: Published
    Description: 436-449
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Lake Bullicante, fluid geochemistry, microbiology, Rome, Alban Hill Volcanic District
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-15
    Description: Sicily hosts many natural manifestations that include thermal waters, gas discharges and mud volcanoes. Due to the significant geodynamic and geological differences, the fluid discharges along a NE-WS–oriented transect that run from the Peloritani Mts. to the Sciacca Plain shows a large variability in water and gas chemical and isotopic compositions. The studied waters are characterized by Ca-HCO3, Ca(Mg)-SO4, Ca-Cl and Na-Cl compositions produced by distinct geochemical processes such as water-rock-gas interactions, mixing between deep and shallow aquifers and seawater and direct and reverse ion exchanges. The gas chemistry is dominated by CO2 to the east and CO2-N2 to the west of the study area, whereas the central part shows mud volcanoes discharging CH4-rich gases. Water isotopes suggest that the thermal waters are fed by a meteoric recharge, although isotopic exchange processes between thermal fluids and host rocks at temperature 〉150°C are recognized. Accordingly, liquid geothermometry suggests equilibrium temperatures up to 220°C. The carbon in CO2 and helium isotopes of the emissions from the westernmost sector of Sicily indicate that these two gases consists of up to 40 % of a mantle component, the latter decreasing to the east down to 10% where CO2 of thermometamorphic origin dominates. Accordingly, conceptual models of the fluid circulation for the western, central and eastern sectors are proposed. The regional geothermal reservoir, hosted in carbonates in the western sector and locally outcropping, is of low to medium temperature. Higher temperature conditions (up to 200-220°C) are suggested by geothermometry and probably related to deeper levels of the system. Sicily can be regarded as a potentially suitable area for future investigations to evaluate specific activities aimed at exploiting the geothermal resource.
    Description: Published
    Description: 102120
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: Fluid geochemistry ; Stable isotopes ; Geothermal exploration ; Dissolved gases ; Tectonics ; 03. Hydrosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-12
    Description: In this study, the results of a continuous monitoring of (i) CO2 fluxes, and (ii) CO2 and CH4 concentrations and carbon isotopic ratios (δ13C-CO2 and δ13C-CH4) in air, carried out from 7 to 21 July 2017 and from October 10 to December 15, 2017 in the city centre of Florence, are presented. The measurements were performed from the roof of the historical building of the Ximenes Observatory. CO2 flux data revealed that the metropolitan area acted as a net source of CO2 during the whole observation period. According to the Keeling plot analysis, anthropogenic contributions to atmospheric CO2 were mainly represented by vehicular traffic (about 30%) and natural gas combustion (about 70%), the latter contributing 7 times more in December than in July. Moreover, the measured CO2 fluxes were about 80% higher in fall than in summer, confirming that domestic heating based on natural gas is the dominant CO2 emitting source in the municipality of Florence. Even though the continuous monitoring revealed a shift in the δ13C-CO2 values related to photosynthetic uptake of atmospheric CO2, the isotopic effect induced by plant activity was restricted to few hours in October and, to a lesser extent, in November. This suggests that urban planning policies should be devoted to massively increase green infrastructures in the metropolitan area in order to counterbalance anthropogenic emissions. During fall, the atmospheric CH4 concentrations were sensibly higher with respect to those recorded in summer, whilst the δ13C-CH4 values shifted towards heavier values. The Keeling plot analysis suggested that urban CH4 emissions were largely related to fugitive emissions from the natural gas distribution pipeline network. On the other hand, δ13C-CH4 monitoring allowed to recognize vehicular traffic as a minor CH4 emitting source.
    Description: Published
    Description: 134245
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Carbon isotopes; Cities; Greenhouse gases; Photosynthesis; Urban air quality
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-11
    Description: We use the chemical and isotopic composition of volcanic gases and steam condensate, in situ measurements of plume composition and remote measurements of SO2 flux to constrain volatile sources and characterize subvolcanic conditions at three persistently degassing and seismically active volcanoes within the Katmai Volcanic Cluster (KVC), Alaska:Mount Martin,Mount Mageik and Trident. In situ plume measurements of gas composition were collected at all three volcanoes usingMultiGAS instruments to calculate gas ratios (e.g. CO2/H2S, SO2/H2S and H2O/H2S), and remote measurements of SO2 column density were collected from Mount Martin and Mount Mageik by ultraviolet spectrometer systems to calculate SO2 fluxes. Fumaroles were directly sampled for chemical and isotopic composition from Mount Mageik and Trident. Mid Ocean Ridge Basalt (MORB)-like 3He/4He ratios (~7.2–7.6 Rc/RA) within Mount Mageik and Trident's fumarole emissions and a moderate SO2 flux (~75 t/d) from Mount Martin, combined with gas compositions dominated by H2O, CO2 and H2S from all three volcanoes, indicate magma degassing and active hydrothermal systems in the subsurface of these volcanoes. Mount Martin's gas emissions have the lowest CO2/H2S ratio (~2–4) and highest SO2 flux compared to the other KVC volcanoes, indicative of shallow magma degassing. Geothermometry techniques applied to Mount Mageik and Trident's fumarolic gas compositions suggest that their hydrothermal reservoirs are located at depths of ~0.2 and 4 km below the surface, respectively. Observations of an unusually reducing gas composition at Trident and organic material in the near-surface soils suggest that thermal decomposition of sediments may be influencing gas composition. When the measured gas compositions from Mount Mageik and Trident are compared with previous samples collected in the late 1990's, relatively stable magmatic-hydrothermal conditions are inferred forMountMageik,while gradual degassing of residual magma and contamination by shallow crustal fluids is inferred for Trident. The isotopic composition of volcanic gases emitted from Mount Mageik and Trident reflect mixing of subducted slab, mantle and crustal volatile sources, with organic sediment and carbonate being the predominant sources. Considering the close proximity of the target volcanoes in comparison with the depth to the subducted slab we speculate that Aleutian Arc volatiles are fed by a relatively homogeneous subducted fluid and that much of the apparent variability in volatile provenance can be explained by shallow crustal volatile sources and/or processes.
    Description: Published
    Description: 64-81
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: Katmai ; volcanic gases ; Mount Martin ; Mount Mageik ; Trident ; hydrothermal system ; arc volcano ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-01-05
    Description: Hydrothermal systems with active surface expressions are important natural source of atmospheric mercury. Here we report on the first simultaneous assessment of gaseous elemental mercury (GEM) and major volatiles (H2S and CO2) fluxes from the fumarolic system of Pisciarelli, currently the most active at the Campi Flegrei caldera (CFc), Naples (Italy). Thiswas achieved via a GPS-synchronized Lumex and MultiGAS surveywhich extends similar investigations reported elsewhere. GEM concentrations measured in the fumarolic emissions were consistently above background air level close to the degassing area (mean ~ 8 ± 3 ng m−3 on average) and ranged up to 12,000 ng m−3. Our data evidenced pulsed sequences of GEM increases in the fumarole plume, closely matched by temporally consistent increases in CO2 and H2S (r2 =0.9), supporting the idea that major volatiles, such as CO2 acts as potential carrier in transporting GEM within the magmatic/hydrothermal systems. The slope of the best fit calculated for the dispersion of our data provides a GEM/CO2 molar ratio of 1.1 × 10−8 and a GEM/H2S of5×10−6, respectively. These ratios are comparable to those reported for both low(~ 100 °C) and high-T (~250 °C) fumaroles from non-explosive volcanic/hydrothermal degassing systems elsewhere. We adopted an adhoc method that combines video footages and gas measurements to obtain high precision concentration maps of gas emissions used to estimate the total atmospheric GEM, CO2 and H2S flux of about 0.0113, 225059 and 511 t y−1, respectively. The human health risk assessment related to the GEM emissions at Pisciarelli, confirms that, except for the degassing fumarolic area, all the main sites affected by the plume dispersion, always remain well below the safe threshold recommended by the health authorities.
    Description: This study has benefited from funding provided by the Italian Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri (DPC). This paper does not necessarily represent DPC official opinion and policies.
    Description: Published
    Description: 107074
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Pisciarelli, Gaseous mercury, Multigas, Lumex,Volatiles, Atmospheric dispersion, Campi Flegrei ; 04.01. Earth Interior ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-12
    Description: L'Istituto Nazionale di Geofisica e Vulcanologia (INGV) è componente del Servizio Nazionale di Protezione Civile, ex articolo 6 della legge 24 febbraio 1992 n. 225 ed è Centro di Competenza per i fenomeni sismici, vulcanici e i maremoti per il Dipartimento della Protezione Civile Nazionale (DPC). L’Osservatorio Vesuviano, Sezione di Napoli dell’INGV, ha nei suoi compiti il monitoraggio e la sorveglianza H24/7 delle aree vulcaniche attive campane (Vesuvio, Campi Flegrei e Ischia). Tali attività sono disciplinate dall’Accordo-Quadro (AQ) sottoscritto tra il DPC e l’INGV per il decennio 2012-2021 e sono dettagliate negli Allegati A e B del suddetto AQ. Il presente Rapporto sul Monitoraggio dei Vulcani Campani rappresenta l’attività svolta dall’Osservatorio Vesuviano e dalle altre Sezioni INGV impegnate nel monitoraggio dell’area vulcanica campana nel primo semestre 2019.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Unpublished
    Description: 4V. Processi pre-eruttivi
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Keywords: Campi Flegrei ; Vesuvio ; Ischia ; Volcano Monitoring ; 04.06. Seismology ; 04.03. Geodesy ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-16
    Description: Urban lakes have become increasingly important in the planning of urban ecology, green infrastructure and green areas in European cities. This paper describes the chemical, isotope and microbial features of Lake Bullicante, a small artificial lake located within the urban area of the city of Rome. It has an anthropogenic origin due to excavation works that intercepted the underlying aquifer, giving rise to a water body. The lake area is 7.000 m2, with a maximum depth of 7 m and located on the distal deposits of the Alban Hills Volcanic District in an area named “Acqua Bullicante” (i.e. Bubbling Water), where degassing phenomena were historically recorded. The proximity of this volcanic district motivated the study on Lake Bullicante as a potential open-air laboratory to trace possible degassing phenomena in a highly urbanized area. A preliminary geochemical and microbial sampling survey was carried out in winter 2018. Samples were collected along a vertical profile of the lake from the surface to the maximum depth. Major, minor, trace elements, dissolved gases and stable isotopes (δD-H2O, δ18OH 2O, δ13C-CO2) were analyzed, along with the analysis of 87Sr/86Sr ratio. The microbial community characteristics were analysed by epifluorescence microscopy (CARD-FISH) and flow cytometry. The chemical composition and water isotopes suggest that lake water has a meteoric origin and is related to a Ca-HCO3 shallow aquifer hosted in volcanic rocks. This is confirmed by both the 87Sr/86Sr ratio of lake water, which falls in the range of values of Alban Hills volcanites, and the chemical-isotopic composition of neighboring wells. A relatively high concentration of dissolved CO2, its isotopic signature (d13C-CO2 20‰ V-PDB), and the high content in organic matter (DOC 10-30 mg/L) suggest for the lake a eutrophication state with denitrification also occurring. Considering the relatively high concentrations of dissolved CO2, an external input of carbon dioxide cannot be completely excluded and as a consequence, not even the hypothesis of mixing processes between biotic and inorganic CO2. This makes further investigations necessary especially during the summer, when the lake is stratified. A summer survey could be also useful to better understand the microbial processes into the lake, its eutrophication evolution and health status, and to plan eventual proper remediation strategies, providing important tools to the local administration and stakeholders to improve, protect and preserve this ecological niche.
    Description: Published
    Description: 436-449
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-11-09
    Description: This work presents chemical and isotopic (δ13C-CO2, δ13C-CH4, 3He, 4He, 20Ne, 40Ar, 36Ar, δ18O and δD) data on fluid discharges from the Colpitas-Taapaca volcanic-hydrothermal system, located close to the Taapaca Volcanic Complex, with the aim to investigate the physical-chemical conditions of the fluid source and to provide a preliminary evaluation of the geothermic potential of the study area. Colpitas thermal springs (to 56 °C) and part of the cold springs (≤18°C) from this area have a Na+-Cl- composition and Total Dissolved Solids (TDS) values (from 6,059 to 19,118 mg/L). Putre springs also show a Na+-Cl- composition, TDS values up to 7,887 mg/L, and outlet temperatures from 21 to 31 °C. Colpitas cold springs, with a Ca2+-SO4 2- composition and relatively low TDS values (≤1,350 mg/L), are likely produced by interaction of shallow water with uprising H2S-rich hydrothermal gases. This process is likely also controlling the chemistry of Jurase thermal springs, which have the highest outlet temperatures of the study area (up to 68 °C), a Ca2+-SO4 2- composition and TDS values ≤2,355 mg/L. Eventually, Las Cuevas springs have temperatures up to 36 °C, a Na+-HCO3 - composition and low TDS values (≤1,067 mg/L), typical features of springs related to a shallow aquifer. The δ18OH 2O and δD-H2O values indicate that all waters have a dominant meteoric origin. Enrichments in 18O and D shown by Colpitas and Putre thermal waters are likely due to steam loss and waterrock interaction, masking a possible direct steam contribution from magmatic degassing. Gas emissions from Colpitas bubbling pools are dominated by CO2, with significant concentrations of CH4, H2S and H2. The Rc/Ra values (up to 2.04) of Colpitas gases indicate a significant contribution of magmatic to mantle He, whereas the high CO2/3He ratios, combined with δ13C-CO2 values ranging from -7.66 to -5.63 ‰ vs. PDB, imply a dominant crustal CO2 source, mostly involving limestone. Estimated temperatures based on the composition of waters and gases from Colpitas are up to 215 °C. Higher temperatures (240 °C) are estimated for Putre thermal waters, although these waters, as well as those from Jurase and Las Cuevas, are too immature for a reliable application of geothermometric techniques. Based on the theoretical reservoir temperature and the measured Cl total output, the thermal energy released from Colpitas thermal area is estimated at up to 13.9 Mw. Such results suggest the occurrence of a promising heat source, possibly related to Taapaca volcanic complex, and encourage the development of future research based on combined geophysical and geochemical approaches, in order to provide a reliable evaluation of the geothermal potential of the whole area.
    Description: Published
    Description: 359-373
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Colpitas-Taapaca geothermal system ; Fluid geochemistry ; volcanic-hydrothermal system ; geothermal potential ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-01-05
    Description: This short communication aims at providing an updated report on degassing activity and ground deformation variations observed during the ongoing (2012–2019) Campi Flegrei caldera unrest, with a particular focus on Pisciarelli, currently its most active fumarolic field.We show that the CO2 flux fromthe main Pisciarelli fumarolic vent (referred as “Soffione”) has increased by a factor N 3 since 2012, reaching in 2018–2019 levels (N600 tons/ day) that are comparable to those typical of a medium-sized erupting arc volcano. A substantial widening ofthe degassing vents and bubbling pools, and a further increase in CO2 concentrations in ambient air (up to 6000 ppm), have also been detected since mid-2018. We interpret this escalating CO2 degassing activity using a multidisciplinary dataset that includes thermodynamically estimated pressures for the source hydrothermal system, seismic and ground deformation data. From this analysis, we show that degassing, deformation and seis- micity have all reached in 2018–2019 levels never observed since the onset ofthe unrest in 2005, with an overall uplift of~57 cmand ~448 seismic events in the last year. The calculated pressure ofthe Campi Flegrei hydrother- mal system has reached ~44 bar and is rapidly increasing. Our results raise concern on the possible evolution of the Campi Flegrei unrest and reinforce the need for careful monitoring of the degassing activity at Pisciarelli, hopefully with the deployment of additional permanent gas monitoring units.
    Description: Published
    Description: 151-157
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...