GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-08
    Description: The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH 〉5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH 〉3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH 〉1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning.
    Description: The NEAMTHM18 was prepared in the framework of the European Project TSUMAPS-NEAM (http://www.tsumaps-neam.eu/) funded by the mechanism of the European Civil Protection and Humanitarian Aid Operations with grant no. ECHO/SUB/2015/718568/PREV26 (https://ec.europa.eu/echo/funding-evaluations/financing-civil-protection-europe/selected-projects/probabilistic-tsunami-hazard_en). The work by INGV authors also benefitted from funding by the INGV-DPC Agreement 2012-2021 (Annex B2).
    Description: Published
    Description: 616594
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Description: 3SR TERREMOTI - Attività dei Centri
    Description: 5SR TERREMOTI - Convenzioni derivanti dall'Accordo Quadro decennale INGV-DPC
    Description: 3IT. Calcolo scientifico
    Description: 4IT. Banche dati
    Description: JCR Journal
    Keywords: probabilistic tsunami hazard assessment ; earthquake-generated tsunami ; hazard uncertainty analysis ; ensemble modeling ; maximum inundation height ; NEAM ; 05.08. Risk ; 03.02. Hydrology ; 04.06. Seismology ; 04.07. Tectonophysics ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-12
    Description: A probabilistic hazard analysis of tsunami generated by subaqueous volcanic explosion is applied to the Campi Flegrei caldera (Campania, Italy). An event tree is developed to quantify the tsunami hazard due to the submarine explosions by: i) defining potential size classes of explosion magnitude on the basis of past volcanic activity in the Campi Flegrei caldera and sites in the underwater part of the caldera; ii) simulating the generation and propaga- tion of the consequent tsunami waves able to reach the coasts of the Campania region for all combinations of tsunami-generating vents and sizes; and iii) quantifying the tsunami probability and relative uncertainty, condi- tional upon the occurrence of an underwater eruption at Campi Flegrei. Tsunami hazard generated by subaque- ous volcanic explosions is considered crucial because of its potential high impact on the densely populated coastal areas of the Pozzuoli Bay and Gulf of Naples even if the probability for eruptions in the submarine part of the caldera is certainly low. The tsunami hazard analysis is presented using conditional hazard curves and maps, that is calculating the probability (and relative uncertainties) of exceeding given tsunami intensity thresh- olds (wave amplitudes at the coast), given the occurrence of a subaqueous eruption. The results indicate that a significant tsunami hazard exists in many areas of the Bay of Naples.
    Description: Published
    Description: 106-116
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-16
    Description: Regional and global tsunami hazard analysis requires simplified and efficient methods for estimating the tsunami inundation height and its related uncertainty. One such approach is the amplification factor (AF) method. Amplification factors describe the relation between offshore wave height and the maximum inundation height, as predicted by linearized plane wave models employed for incident waves with different wave characteristics. In this study, a new amplification factor method is developed that takes into account the offshore bathymetry proximal to the coastal site. The present AFs cover the North-Eastern Atlantic and Mediterranean (NEAM) region. The model is the first general approximate model that quantifies inundation height uncertainty. Uncertainty quantification is carried out by analyzing the inundation height variability in more than 500 high-resolution inundation simulations at six different coastal sites. The inundation simulations are undertaken with different earthquake sources in order to produce different wave period and polarity. We show that the probability density of the maximum inundation height can be modeled with a log-normal distribution, whose median is quite well predicted by the AF. It is further demonstrated that the associated maximum inundation height uncertainties are significant and must be accounted for in tsunami hazard analysis. The application to the recently developed TSUMAPS-NEAM probabilistic tsunami hazard analysis (PTHA) is presented as a use case.
    Description: Published
    Description: 3227–3246
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-07
    Description: Inundation maps are a fundamental tool for coastal risk management and in particular for designing evacuation maps and evacuation planning. These in turn are a necessary component of the tsunami warning systems’ last-mile. In Italy inundation maps are informed by a probabilistic tsunami hazard model. Based on a given level of acceptable risk, Italian authorities in charge for this task recommended to consider, as design hazard intensity, the average return period of 2500 years and the 84th percentile of the hazard model uncertainty. An available, regional-scale tsunami hazard model was used that covers the entire Italian coastline. Safety factors based on analysis of run-up variability and an empirical coastal dissipation law on a digital terrain model (DTM) were applied to convert the regional hazard into the design run-up and the corresponding evacuation maps with a GIS-based approach. Since the regional hazard cannot fully capture the local-scale variability, this simplified and conservative approach is considered a viable and feasible practice to inform local coastal risk management in the absence of high-resolution hazard models. The present work is a first attempt to quantify the uncertainty stemming from such procedure. We compare the GIS-based inundation maps informed by a regional model with those obtained from a local high-resolution hazard model. Two locations on the coast of eastern Sicily were considered, and the local hazard was addressed with the same seismic model as the regional one, but using a higher-resolution DTM and massive numerical inundation calculations with the GPU-based Tsunami-HySEA nonlinear shallow water code. This study shows that the GIS-based inundation maps used for planning deal conservatively with potential hazard underestimation at the local scale, stemming from typically unmodeled uncertainties in the numerical source and tsunami evolution models. The GIS-based maps used for planning fall within the estimated “error-bar” due to such uncertainties. The analysis also demonstrates the need to develop local assessments to serve very specific risk mitigation actions to reduce the uncertainty. More in general, the presented case-studies highlight the importance to explore ways of dealing with uncertainty hidden within the high-resolution numerical inundation models, e.g., related to the crude parameterization of the bottom friction, or the inaccuracy of the DTM.
    Description: Published
    Description: 628061
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: tsunamis ; inundation maps ; early warning ; probabilistic hazard ; numerical modeling ; Italy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-01-14
    Description: Probabilistic Tsunami Hazard Analysis (PTHA) quantifies the probability of exceeding a specified inundation intensity at a given location within a given time interval. PTHA provides scientific guidance for tsunami risk analysis and risk management, including coastal planning and early warning. Explicit computation of site-specific PTHA, with an adequate discretization of source scenarios combined with high-resolution numerical inundation modelling, has been out of reach with existing models and computing capabilities, with tens to hundreds of thousands of moderately intensive numerical simulations being required for exhaustive uncertainty quantification. In recent years, more efficient GPU-based High-Performance Computing (HPC) facilities, together with efficient GPU-optimized shallow water type models for simulating tsunami inundation, have now made local long-term hazard assessment feasible. A workflow has been developed with three main stages: 1) Site-specific source selection and discretization, 2) Efficient numerical inundation simulation for each scenario using the GPU-based Tsunami-HySEA numerical tsunami propagation and inundation model using a system of nested topo-bathymetric grids, and 3) Hazard aggregation. We apply this site-specific PTHA workflow here to Catania, Sicily, for tsunamigenic earthquake sources in the Mediterranean. We illustrate the workflows of the PTHA as implemented for High-Performance Computing applications, including preliminary simulations carried out on intermediate scale GPU clusters. We show how the local hazard analysis conducted here produces a more fine-grained assessment than is possible with a regional assessment. However, the new local PTHA indicates somewhat lower probabilities of exceedance for higher maximum inundation heights than the available regional PTHA. The local hazard analysis takes into account small-scale tsunami inundation features and non-linearity which the regional-scale assessment does not incorporate. However, the deterministic inundation simulations neglect some uncertainties stemming from the simplified source treatment and tsunami modelling that are embedded in the regional stochastic approach to inundation height estimation. Further research is needed to quantify the uncertainty associated with numerical inundation modelling and to properly propagate it onto the hazard results, to fully exploit the potential of site-specific hazard assessment based on massive simulations.
    Description: Published
    Description: 591549
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-23
    Description: The 24 August 2016 earthquake very heavily struck the central sector of the Apennines among the Lazio,Umbria, Marche and Abruzzi regions, devastating the town of Amatrice, the nearby villages and other localities along the Tronto valley. In this paper we present the results of the macroseismic field survey carried out using the European Macroseismic Scale (EMS) to take the heterogeneity of the building stock into account. We focused on the epicentral area, where geological conditions may also have contributed to the severity of damage. On the whole, we investigated 143 localities; the maximum intensity 10 EMS has been estimated for Amatrice, Pescara del Tronto and some villages in between. The severely damaged area (8-9 EMS) covers a strip trending broadly N-S and extending 15 km in length and 5 km in width; minor damage occurred over an area up to 35 km northward from the epicenter.
    Description: Published
    Description: 3T. Storia Sismica
    Description: 4T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: 1IT. Reti di monitoraggio
    Description: 4IT. Banche dati
    Description: JCR Journal
    Keywords: Macroseismic survey ; EMS intensity ; Amatrice 2016 earthquake ; 04.06. Seismology ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-02-25
    Description: The Tsunami Alert Centre of the INGV (CAT-INGV) was created with the aim of contributing to the mitigation of the risk due to tsunamis triggered by earthquakes on the Italian and Mediterranean coasts. Tsunamis of seismic origin, in addition to being the most frequent, are those that can be detected more quickly. Seismic waves, in fact, travel in the crust with a much higher speed than that of tsunami waves. With effective seismic networks connected in real time, an "Early Warning" system can be implemented, i.e. a system capable of sending an alert signal before the arrival of the tsunami waves, at least from a certain distance from the source. The CAT-INGV has two main tasks. The first one is to provide alerts to the competent authorities in the event of potential tsunamigenic earthquakes in the Mediterranean, taking into account the criteria defined by the Department of Civil Protection for this purpose. The second one consists in carrying out the necessary studies for the definition of the probabilistic danger of tsunamis for the Italian coasts, starting from those of seismic origin (Seismic Probabili-stic Tsunami Hazard Analysis, SPTHA). In this contribution the first aspect is described, while the realization of the studies on hazard at the Mediterranean scale is the subject of research described in various recent articles (Lorito et al., 2015; Grezio et al., 2017; Selva et al., 2017a; Selva et al., 2017b). The TSUMAPS-NEAM project, funded by the European Commission and concluded at the end of 2017, provided the first hazard map for the Mediterranean region and the north-east Atlantic (Basili et al., 2017).
    Description: Published
    Description: 91-97
    Description: 5T. Modelli di pericolosità sismica e da maremoto
    Description: N/A or not JCR
    Keywords: Centro Allerta Tsunami ; Maremoto ; Early Warning System ; Tsunamy Warning System ; IOC/NEAMTWS ; rischio ; risk ; sorveglianza ; surveillance ; allerta ; alert ; CENTRO ALLERTA TSUNAMI
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-10-01
    Description: European-Union Civil Protection Mechanism, DG-ECHO, Agreement Number: ECHO/SUB/2015/718568/PREV26
    Description: Published
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Description: 4IT. Banche dati
    Keywords: Europe ; NEAM ; Atlantic Ocean ; Mediterranean Sea ; Aegean Sea ; Marmara Sea ; Black Sea ; earthquake ; tsunami ; moment magnitude ; crustal fault ; subduction interface ; megathrust ; probabilistic hazard model ; natural hazard ; Disaster Risk Reduction ; 05.08. Risk ; 04.06. Seismology ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: web product
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-17
    Description: The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-East Atlantic, the Mediterranean, and connected Seas (NEAM). In this online data product, the hazard results are provided by hazard curves calculated at 2,343 Points of Interest (POI), distributed in the North-East Atlantic (1,076 POIs), the Mediterranean Sea (1,130 POIs), and the Black Sea (137 POIs) at an average spacing of ~20 km. For each POI, hazard curves are given for the mean, 2nd, 16th, 50th, 84th, and 98th percentiles. Maps derived from hazard curves are Probability maps for Maximum Inundation Heights (MIH) of 1, 2, 5, 10, 20 meters; Hazard maps for Average Return Periods (ARP) of 500, 1,000, 2,500, 5,000, 10,000 years. For each map, precalculated displays are provided for the mean, the 16th percentile, and the 84th percentile. All data are also made accessible through an interactive web mapper and through Open Geospatial Consortium standard protocols. The model was prepared in the framework of the European Project TSUMAPS-NEAM (http://www.tsumaps-neam.eu/) funded by the mechanism of the European Civil Protection and Humanitarian Aid Operations (grant no. ECHO/SUB/2015/718568/PREV26).
    Description: European-Union Civil Protection Mechanism, DG-ECHO, Agreement Number ECHO/SUB/2015/718568/PREV26
    Description: Published
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Keywords: Europe ; NEAM ; Atlantic Ocean ; Mediterranean Sea ; Aegean Sea ; Marmara Sea ; Black Sea ; earthquake ; tsunami ; moment magnitude ; crustal fault ; subduction interface ; megathrust ; probabilistic hazard model ; natural hazard ; Disaster Risk Reduction ; 05.08. Risk ; 04.06. Seismology ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-03-03
    Description: Site-specific seismic probabilistic tsunami hazard analysis (SPTHA) is a computationally demanding task, as it requires, in principle, a huge number of high-resolution numerical simulations for producing probabilistic inundation maps. We implemented an efficient and robust methodology using a filtering procedure to reduce the number of numerical simulations needed while still allowing for a full treatment of aleatory and epistemic uncertainty. Moreover, to avoid biases in tsunami hazard assessment, we developed a strategy to identify and separately treat tsunamis generated by near-field earthquakes. Indeed, the coseismic deformation produced by local earthquakes necessarily affects tsunami intensity, depending on the scenario size, mechanism and position, as coastal uplift or subsidence tends to diminish or increase the tsunami hazard, respectively. Therefore, we proposed two parallel filtering schemes in the far- and the near-field, based on the similarity of offshore tsunamis and hazard curves and on the similarity of the coseismic fields, respectively. This becomes mandatory as offshore tsunami amplitudes can not represent a proxy for the coastal inundation in the case of near-field sources. We applied the method to an illustrative use case at the Milazzo oil refinery (Sicily, Italy). We demonstrate that a blind filtering procedure can not properly account for local sources and would lead to a nonrepresentative selection of important scenarios. For the specific source–target configuration, this results in an overestimation of the tsunami hazard, which turns out to be correlated to dominant coastal uplift. Different settings could produce either the opposite or a mixed behavior along the coastline. However, we show that the effects of the coseismic deformation due to local sources can not be neglected and a suitable correction has to be employed when assessing local-scale SPTHA, irrespective of the specific signs of coastal displacement.
    Description: Published
    Description: 455–469
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...