GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-17
    Description: We provide a database of the coseismic surface ruptures produced by the 21 August 2017 Md 4.0 earthquake that struck the Casamicciola Terme village in the north of Ischia volcanic island (Italy). Despite its small size, the earthquake caused two fatalities and heavy damages in a restricted area of a few square kilometers. The shallow hypocentral depth of the earthquake caused a significant coseismic surface faulting, testified by a main alignment of ruptures mapped for a 2 km end-to-end length along the Casamicciola E-W trending normal fault system, bounding the northern slope of Mt. Epomeo. Casamicciola Terme has been recurrently destroyed in the last centuries by similar volcano-tectonic earthquakes (1762, 1767, 1796, 1828, 1881, and 1883). After the catastrophic 1883 Casamicciola event (2343 casualties), this is the first heavy damaging earthquake at Ischia that provides, for the first time, the opportunity of integrating historical seismicity, macroseismic observations, instrumental information, and detailed mapping of coseismic geological effects. We performed a detailed field surveys in the epicentral region of the 21 August earthquake to describe the ruptures geometry and kinematics of the seismogenetic fault responsible of the earthquake with the aim of contributing to the seismic hazard evaluation and land use planning in the Ischia island, one of the most crowded touristic destinations worldwide. Summarizing our study of ground effects for the 21 August 2017 earthquake is important for improving knowledge on surface earthquake in the volcanic area and contributing to complete the gap of empirical scaling relating to the surface-faulting mechanism due to small-size or moderate earthquakes in volcano-tectonic framework. The collected field observations result in a dataset of 88 georeferenced records describing coseismic ruptures/fractures by features as ID number, time of sample collection, location (latitude, longitude, elevation), type of rupture, type of affected substratum, attitude (dip angle, dip direction, strike), surface offset (opening, throw, strike slip, net slip), kinematics, slip vector attitude, width of the deformation zone.
    Keywords: Casamicciola_Terme_coseismic_ruptures; Casamicciola fault; coseismic rupture; DATE/TIME; Direction; earthquake; ELEVATION; Ischia, Italy; Ischia island; Kinematics; LATITUDE; Length; LONGITUDE; Observation; Opening; ORDINAL NUMBER; Strike; Substrate type; Throw; UTM Easting, Universal Transverse Mercator; UTM Northing, Universal Transverse Mercator; volcano-tectonic
    Type: Dataset
    Format: text/tab-separated-values, 775 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-08
    Description: Radioremote Controlled (RC) aircrafts can provide a fast and accurate approach for surveying and monitoring any terrain, especially when natural hazards must be analyzed and assessed and even more to pinpoint human-originated factors which can alter the natural condition of equilibrium of a given habitat. These devices can provide a complete analysis of the examined areas through an innovative approach to surveying, that allows to better and more deeply evaluate conditions of risk and hazard on the ground and to adopt new, alternative approaches to analysis....
    Description: Istituto Nazionale di Geofisica e Vulcanologia ; Agenzia Area Nolana
    Description: Published
    Description: San Francisco
    Description: 6IT. Osservatori non satellitari
    Keywords: Aircrafts (RC) ; Monitoring ; Natural Hazards
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-07
    Description: The purpose of this study is to analyze the surface temperature and the distribution of thermal signatures on Tuscany’s geothermal districts using data obtained through three separate surveys via satellite and an unmanned aerial vehicle (UAV). The analysis considers the highest available spatial resolution ranging from hundreds of meters per pixel of the satellite thermal images and the tenths/hundreds of centimeters per pixel of the thermal images acquired by the UAV. The surface temperature maps obtained by satellite data acquired at suitable spatial resolution and the thermal measurements obtained by the thermal camera installed on the UAV were orthorectified and geocoded. This allowed, for example, following the evolution of thermal anomalies, which may represent a modification of the current state of the geothermal field and a possible hazard for both the population and industrial assets. Here, we show the results obtained in three field campaigns during which the simultaneous acquisition of Landsat 8 satellite and UAV (FlyBit octocopter, IDS, Rome, Italy) thermal data were analyzed. By removing the atmosphere contribution from Landsat 8 data, we have produced three surface temperature maps that are compared with the ground field measurements and the surface temperature maps elaborated by FLIR VUE PRO-R on the UAV.
    Description: Published
    Description: id 2018
    Description: 5IT. Osservazioni satellitari
    Description: 6IT. Osservatori non satellitari
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-12
    Description: Mechanical sampling, conventional dissolution and chemical separation, followed by analysis using the TIMS (Thermal Ionisation Mass Spectrometry), is one of the best methods for highly accurate and precise determinations of Sr isotopic compositions in most geological materials over a wide range of Sr concentrations. Recent technological improvements have provided the opportunity to analyze Sr isotopic compositions at the scale of individual crystals and along core to rim transects of single minerals. Sr isotopic ratio variations, recorded from core to rim of a mineral grain, reflect the progressive changes, if any, in the composition of the magma from which the mineral has crystallized [e.g. Davidson et al., 2001, 2007; Francalanci et al., 2005]. Therefore, the relationship between isotopic variations and petrographic features can be used to constrain magma evolution pathways involving open system processes, such as magma mixing, contamination and recharge. Here we present the methodology that we have set up at the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Napoli - Osservatorio Vesuviano (OV) for the precise analysis of ng-levels of Sr, purified either from single crystals or from microgram-sized solid samples, extracted from minerals in thin sections. Physical sampling has been performed by using a computer numerical control milling machine: the MicroMill™ manufactured by the New Wave™. The chemical procedures routinely adopted at the INGV-OV Radiogenic Isotope Laboratory for extracting Sr and Nd from natural samples, and the analytical methods for measuring their isotopic composition [Arienzo et al., 2013 and references therein], allowed us to develop and perform high precision analyses of single crystals and microgram-sized solid samples collected through this innovative microsampling methodologies. We also report the results of the analyses performed on a certified international standard in order to evaluate the quality of data produced by the INGV-OV Radiogenic Isotope Laboratory. In particular, we used the National Institute of Standards and Technology (NIST) SRM 987 standard, with Sr concentration of 3, 6, 12 ng/µl. Results obtained on single feldspar crystals from the Campanian Ignimbrite (39 ka) [Fisher et al., 1993; Civetta et al, 1997; De Vivo et al., 2001; Arienzo et al., 2009 and references therein] and the Agnano Monte Spina tephra (4690-4300 a cal BP) [de Vita et al., 1999; Blockley et al., 2008; Arienzo et al., 2010], are reported to test the quality of the whole analytical procedure.
    Description: INGV
    Description: Published
    Description: 1-20
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: SR ISOTOPIC MICROANALYSIS ; RADIOGENIC ISOTOPE LABORATORY
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-12
    Description: L'Istituto Nazionale di Geofisica e Vulcanologia (INGV) è componente del Servizio Nazionale di Protezione Civile, ex articolo 6 della legge 24 febbraio 1992 n. 225 ed è Centro di Competenza per i fenomeni sismici, vulcanici e i maremoti per il Dipartimento della Protezione Civile Nazionale (DPC). L’Osservatorio Vesuviano, Sezione di Napoli dell’INGV, ha nei suoi compiti il monitoraggio e la sorveglianza H24/7 delle aree vulcaniche attive campane (Vesuvio, Campi Flegrei e Ischia). Tali attività sono disciplinate dall’Accordo-Quadro (AQ) sottoscritto tra il DPC e l’INGV per il decennio 2012-2021 e sono dettagliate negli Allegati A e B del suddetto AQ. Il presente Rapporto sul Monitoraggio dei Vulcani Campani rappresenta l’attività svolta dall’Osservatorio Vesuviano e dalle altre Sezioni INGV impegnate nel monitoraggio dell’area vulcanica campana nel primo semestre 2019.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Unpublished
    Description: 4V. Processi pre-eruttivi
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Keywords: Campi Flegrei ; Vesuvio ; Ischia ; Volcano Monitoring ; 04.06. Seismology ; 04.03. Geodesy ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-05-12
    Description: Sr-isotopic microanalysis has been performed on selected minerals from the Campi Flegrei caldera, together with Sr and Nd isotopic ratio determinations on bulk mineral and glass fractions. The aim was a better characterization of the chemically homogeneous, but isotopically distinct magmatic components which fed volcanic eruptions of the caldera over the past 5 ka, in order to enhance our knowledge about one of the most dangerous volcanoes on Earth.Information on the involved magmatic endmembers, unobtainable by analyzing the isotopic composition of whole rock samples and bulk mineral fractions, has been acquired through high-precision determination of 87Sr/86Sr on single crystals and microdrilled mineral powders. We focused our investigations on the products emplaced during the Astroni 6 eruption (4.23 cal ka BP), assumed representative of the expected event in case of renewed volcanic activity in the Campi Flegrei caldera. Data on single crystals and microdrilled mineral powders have been compared with Sr and Nd isotopic compositions of bulk mineral fractions from productsemplaced during the whole Astroni activity, which included seven distinct eruptions. The 87Sr/86Sr ratios of single crystals and microdrilled mineral powders are in the 0.7060 to 0.7076 range, much wider than that of bulk mineral fractions, which range from 0.7066 to 0.7076. Moreover, the Sr isotopic ratios are inversely correlated to 143Nd/144Nd. The new data allow us to better define the magmatic endmembers involved in mingling/mixing processes that occurred prior to/during the Astroni activity. One magmatic endmember, characterized by average 87Sr/86Sr ratio of ~0.70750, was quite common in the past 15 ka activity of the Campi Flegrei caldera; the other, as evidenced by the isotopic composition of single feldspar and clinopyroxene crystals, is less enriched in radiogenic Sr (87Sr/86Sr ~0.70724). The latter is interpreted to represent a new magmatic component that entered the Campi Flegrei caldera feeding system in the past 5 ka, the previously recognized Astroni 6 component. However, diopside crystals in Astroni 6 are characterized by even lower 87Sr/86Sr, in the range of 0.7060–0.7068 and by the highest 143Nd/144Nd ratios measured in the products of Astroni activity. These diopsides may represent another common magmatic component, as they have been found in most of the Phlegrean Volcanic District products emplaced over the past 75 ka. These diopsides, crystallized in a mantle-derived mafic magma, were entrapped by the Astroni 6 magma during ascent, before it mingled/mixed with the more differentiated and enriched in radiogenic Sr resident magma, thus attaining an intermediate Sr-Nd isotopic fingerprint. These results have an important outcome on the understanding of the volcano behavior, as renewed activity can be triggered by the arrival of fresh magma in the feeding system that would mingle/mix with the resident magma. Such an event may be able to start an unrest phase at the volcano that could last for years or decades, perhaps culminating in a new eruption.
    Description: Published
    Description: 24-37
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Magma mixing ; Microdrilling ; Sr-isotopic microanalysis ; Astroni eruptions ; Campi Flegrei caldera
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-23
    Description: Quiescent volcanoes dissipate a large part of their thermal energy through hot soils and ground degassing mainly in restricted areas called Diffuse Degassing Structures. La Solfatara crater represents the main spot of thermal release for the Campi Flegrei volcano (Italy) despite its reduced dimensions with regards to the whole caldera. The purpose of this study was to develop a method to measure thermal energy release extrapolating it from the ground surface temperature. We used imaging from thermal cameras at short distances (1 m) to obtain a mapping of areas with thermal anomalies and a measure of their temperatures. We built a conceptual model of the energy release from the ground to atmosphere, which well fits the experimental data taken in the La Solfatara crater. Using our model and data, we could estimate the average heat flux in a portion of the crater as qavg = 220 40W/m2, compatible with other measurements in literature.
    Description: Published
    Description: id 167
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-03-26
    Description: On 21 August 2017, a shallow earthquake of Md 4.0 struck the CasamicciolaTerme village in the north of Ischia volcanic island (Italy). It caused two fatalities and heavy damage in a restricted area of a few square kilometers. Casamicciola Terme has been recurrently destroyed in the last centuries by similar volcano-tectonic earthquakes (1762, 1767, 1796, 1828, 1881, and 1883). After the catastrophic 1883 Casamicciola event (2343 casualties), this is the first heavy damaging earthquake at Ischia that provides, for the first time, the opportunity of integrating historical seismicity, macroseismic observations, instrumental information, and detailed mapping of coseismic geological effects. Soon after the 2017 mainshock we surveyed the epicentral area to collect data on the coseismic ground effects, recording more than 100 geological field observations. Mapped effects define a belt which closely follows the trace of the Casamicciola E–W-trending normal fault system, bounding the northern slope of Mt. Epomeo, previously known as a Latest Pleistocene to Holocene normal fault with a slip rate of ∼3:0 cm=yr. We found significant evidence for coseismic surface faulting, testified by a main alignment of ruptures for a 2 km end-to-end length and normal dip-slip displacement of 1–3 cm. The geometry and regularity of the structural pattern, together with constant kinematics of the coseismic ruptures with the north side down, strongly suggest a primary tectonic origin for the mapped ruptures and strongly supports an E–W normal-faulting focal mechanism for the 2017 Casamicciola earthquake.Macroseismic information supports the notion that previous historical events also had a similar style of faulting.
    Description: Published
    Description: 1323-1334
    Description: 3T. Sorgente sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-03-17
    Description: In this article, we show why the geological model of the 21 August 2017 earthquake proposed by Nappi et al. (2018) has less uncertainty than the sourcemodel proposed by De Novellis et al. (2018). As a matter of fact, the Nappi et al. (2018) model takes into account all geophysical and geological information collected soon after the earthquake. On the contrary, the model proposed by DeNovellis et al. (2018) is based on a limited database, which does not include (1) the available geological and macroseismic information and (2) the extensive scientific literature concerning the correlation between seismic source and surface faulting, also in volcanic areas similar to Ischia. Nevertheless, we are grateful for the comments from De Novellis et al. (2018) because they give us the opportunity to consider the epistemological landscape in which we should frame the research for the best source model of the 21 August 2017 Casamicciola earthquake.
    Description: Published
    Description: 316-321
    Description: 1T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-09-06
    Description: L'Istituto Nazionale di Geofisica e Vulcanologia (INGV) è componente del Servizio Nazionale di Protezione Civile, ex articolo 6 della legge 24 febbraio 1992 n. 225 ed è Centro di Competenza per i fenomeni sismici, vulcanici e i maremoti per il Dipartimento della Protezione Civile Nazionale (DPC). L’Osservatorio Vesuviano, Sezione di Napoli dell’INGV, ha nei suoi compiti il monitoraggio e la sorveglianza H24/7 delle aree vulcaniche attive campane (Vesuvio, Campi Flegrei e Ischia). Tali attività sono disciplinate dall’Accordo-Quadro (AQ) sottoscritto tra il DPC e l’INGV per il decennio 2012-2021 e sono dettagliate negli Allegati A e B del suddetto AQ. Il presente Rapporto sul Monitoraggio dei Vulcani Campani rappresenta l’attività svolta dall’Osservatorio Vesuviano e dalle altre Sezioni INGV impegnate nel monitoraggio dell’area vulcanica campana nel secondo semestre 2019.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Unpublished
    Description: 4V. Processi pre-eruttivi
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: 2IT. Laboratori analitici e sperimentali
    Description: 4IT. Banche dati
    Keywords: Campi Flegrei ; Vesuvio ; Ischia ; Volcano Monitoring ; 04.06. Seismology ; 04.03. Geodesy ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...