GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-03-25
    Keywords: Biomarker; Deep-sea Sponge Grounds Ecosystems of the North Atlantic; Equivalent chain length; Geodia barretti, phospholipid fatty acid; Geodia barretti, phospholipid fatty acid, standard deviation; Hymedesmia paupertas, phospholipid fatty acid; Hymedesmia paupertas, phospholipid fatty acid, standard deviation; NorthAtlantic; Phospholipid fatty acid; SponGES; Vazella pourtalesii, phospholipid fatty acid; Vazella pourtalesii, phospholipid fatty acid, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 347 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-24
    Keywords: Carbon, organic; Class; Deep-sea Sponge Grounds Ecosystems of the North Atlantic; Dry mass; Identification; Nitrogen, organic; NorthAtlantic; Species; SponGES; Treatment: food; Type; δ13C; δ15N
    Type: Dataset
    Format: text/tab-separated-values, 1165 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-03
    Description: Sponges produce distinct fatty acids (FAs) that (potentially) can be used as chemotaxonomic and ecological biomarkers to study endosymbiont-host interactions and the functional ecology of sponges. Here, we present FA profiles of five common habitat-building deep-sea sponges (class Demospongiae, order Tetractinellida), which are classified as high microbial abundance (HMA) species. Geodia hentscheli, G. parva, G. atlantica, G. barretti, and Stelletta rhaphidiophora were collected from boreal and Arctic sponge grounds in the North-Atlantic Ocean. Bacterial FAs dominated in all five species and particularly isomeric mixtures of mid-chain branched FAs (MBFAs, 8- and 9-Me-C16:0 and 10- and 11-Me-C18:0) were found in high abundance (together ≥ 20% of total FAs) aside more common bacterial markers. In addition, the sponges produced long-chain linear, mid- and a(i)-branched unsaturated FAs (LCFAs) with a chain length of 24‒28 C atoms and had predominantly the typical Δ5,9 unsaturation, although the Δ9,19 and (yet undescribed) Δ11,21 unsaturations were also identified. G. parva and S. rhaphidiophora each produced distinct LCFAs, while G. atlantica, G. barretti, and G. hentscheli produced similar LCFAs, but in different ratios. The different bacterial precursors varied in carbon isotopic composition (δ13C), with MBFAs being more enriched compared to other bacterial (linear and a(i)-branched) FAs. We propose biosynthetic pathways for different LCFAs from their bacterial precursors, that are consistent with small isotopic differences found in LCFAs. Indeed, FA profiles of deep-sea sponges can serve as chemotaxonomic markers and support the concept that sponges acquire building blocks from their endosymbiotic bacteria.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Sponges produce distinct fatty acids (FAs) that (potentially) can be used as chemotaxonomic and ecological biomarkers to study endosymbiont-host interactions and the functional ecology of sponges. Here, we present FA profiles of five common habitat-building deep-sea sponges (class Demospongiae, order Tetractinellida), which are classified as high microbial abundance (HMA) species. Geodia hentscheli, G. parva, G. atlantica, G. barretti, and Stelletta rhaphidiophora were collected from boreal and Arctic sponge grounds in the North-Atlantic Ocean. Bacterial FAs dominated in all five species and particularly isomeric mixtures of mid-chain branched FAs (MBFAs, 8- and 9-Me-C16:0 and 10- and 11-Me-C18:0) were found in high abundance (together ≥ 20% of total FAs) aside more common bacterial markers. In addition, the sponges produced long-chain linear, mid- and a(i)-branched unsaturated FAs (LCFAs) with a chain length of 24‒28 C atoms and had predominantly the typical Δ5,9 unsaturation, although the Δ9,19 and (yet undescribed) Δ11,21 unsaturations were also identified. G. parva and S. rhaphidiophora each produced distinct LCFAs, while G. atlantica, G. barretti, and G. hentscheli produced similar LCFAs, but in different ratios. The different bacterial precursors varied in carbon isotopic composition (δ13C), with MBFAs being more enriched compared to other bacterial (linear and a(i)-branched) FAs. We propose biosynthetic pathways for different LCFAs from their bacterial precursors, that are consistent with small isotopic differences found in LCFAs. Indeed, FA profiles of deep-sea sponges can serve as chemotaxonomic markers and support the concept that sponges acquire building blocks from their endosymbiotic bacteria.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Sponges are ubiquitous components of various deep‐sea habitats, including cold water coral reefs, and form deep‐sea sponge grounds. Although the deep sea is generally considered to be a food‐limited environment, these ecosystems are known to be hotspots of biodiversity and carbon cycling. To assess the role of sponges in the carbon cycling of deep‐sea ecosystems, we studied the carbon budgets of six dominant deep‐sea sponges of different phylogenetic origin, with various growth forms and hosting distinct associated microbial communities, in an ex situ aquarium setup. Additionally, we determined biomass metrics—planar surface area, volume, wet weight, dry weight (DW), ash‐free dry weight, and organic carbon (C) content—and conversion factors for all species. Oxygen (O2) removal rates averaged 3.3 ± 2.8 μmol O2 g DWsponge h−1 (mean ± SD), live particulate (bacterio‐ and phytoplankton) organic carbon removal rates averaged 0.30 ± 0.39 μmol C g DWsponge h−1 and dissolved organic carbon (DOC) removal rates averaged 18.70 ± 25.02 μmol C g DWsponge h−1. Carbon mass balances were calculated for four species and revealed that the sponges acquired 1.3–6.6 times the amount of carbon needed to sustain their minimal respiratory demands. These results indicate that irrespective of taxonomic class, growth form, and abundance of microbial symbionts, DOC is responsible for over 90% of the total net organic carbon removal of deep‐sea sponges and allows them to sustain themselves in otherwise food‐limited environments on the ocean floor.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...