GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2023-02-08
    Beschreibung: Pristinely preserved mineral pseudomorphs called glendonites, up to 1.6 m long, from the Palaeogene strata of Denmark allow detailed crystallographic characterisation and add to the understanding of the transformation of the precursor mineral, ikaite (CaCO3 center dot 6H(2)O), to calcite, which constitutes the glendonite. We describe Danish pseudomorphs after ikaite from two localities and formations: the Early Eocene Fur Formation and the Late Oligocene Brejning Formation. This detailed study highlights that key aspects such as morphology and mode of occurrence of these ancient glendonites are identical to those of their parent mineral ikaite, when it grows in marine sediments. Systematic distortion of the angles in glendonite and marine sedimentary ikaite relative to the ideal ikaite symmetry may arise due to the incorporation of organic matter into the crystal structure, and we demonstrate the similarity between modern and ancient ikaite formation zones in the marine sedimentary realm with respect to organic matter.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-02-07
    Beschreibung: Petrography of recrystallised ikaite from Ocean Drilling Program material has been presented previously from Nankai Trough and Congo (ex-Zaire) deep-sea fan. This paper expands on the Nankai Trough ikaite observations, drawing on evidence from Laptev Sea, South Georgia, Okhotsk Sea, and coastal lagoon Point Barrow. However, even though many ikaite and glendonite sites occur at high latitudes, it cannot be that ikaite forms exclusively in polar environments, as demonstrated by the occurrences in the low latitude low temperature deep sea sediments offshore Gulf of Guinea (Angola Congo) and mid-latitude deep-sea trenches offshore Japan. Recrystallised ikaite occurs as mm large, zoned calcite crystals in all samples, along with secondary phases of calcite. Our data set is unique in that the origin, storage, and recrystallisation process of natural formed ikaite is recorded in detail and confirms that glendonite petrographic characteristics are a consequence of the structure and chemistry of recrystallising ikaite and not the physical or geochemical environment. The transformation of man-made ikaite to calcite as recorded in laboratory studies, is a process very similar to the one we have observed for natural ikaite. Most significant is that there is variation in the order of the calcite types within a single sample, leading to the conclusion that the variation is a consequence of impurities and geochemical variability in the ikaite, not the external environment. Morphological observations reveal similarities in ikaite and glendonite, this and the similarity in internal textures in glendonite and recrystallised ikaite confirms that glendonite may be used as an indicator of past presence of ikaite.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...