GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-05-12
    Description: The long-term warming of the ocean is a critical indicator of both the past and present state of the climate system. It also provides insights about the changes to come, owing to the persistence of both decadal variations and secular trends, which the ocean records extremely well (Hansen et al., 2011; IPCC, 2013; Rhein et al., 2013; Trenberth et al., 2016; Abram et al., 2019). It is well established that the emission of greenhouse gasses by human activities is mainly responsible for global warming since the industrial revolution (IPCC, 2013; Abram et al., 2019). The increased concentration of heat-trapping greenhouse gases in the atmosphere has interfered with natural energy flows. Currently there is an energy imbalance in the Earth’s climate system of almost 1 W m−2 (Trenberth et al., 2014; von Schuckmann et al., 2016, 2020a; Wijffels et al., 2016; Johnson et al., 2018; Cheng et al., 2019a; von Schuckmann et al., 2020a). Over 90% of this excess heat is absorbed by the oceans, leading to an increase of ocean heat content (OHC) and sea level rise, mainly through thermal expansion and melting of ice over land. These processes provide a useful means to quantify climate change. The first global OHC time series by Levitus et al. (2000) identified a robust long-term 0−3000 m ocean warming from 1948−98. Since then, many other analyses of global and regional OHC data have been performed. Here, we provide the first analysis of recent ocean heating, incorporating 2020 measurements through 2020 into our analysis.
    Description: Published
    Description: 523–530
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: ocean temperature ; climate change ; climate change
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-14
    Description: Ocean temperature observations are crucial for a host of climate research and forecasting activities, such as climate monitoring, ocean reanalysis and state estimation, seasonal-to-decadal forecasts, and ocean forecasting. For all of these applications, it is crucial to understand the uncertainty attached to each of the observations, accounting for changes in instrument technology and observing practices over time. Here, we describe the rationale behind the uncertainty specification provided for all in situ ocean temperature observations in the International Quality-controlled Ocean Database (IQuOD) v0.1, a value-added data product served alongside the World Ocean Database (WOD). We collected information from manufacturer specifications and other publications, providing the end user with uncertainty estimates based mainly on instrument type, along with extant auxiliary information such as calibration and collection method. The provision of a consistent set of observation uncertainties will provide a more complete understanding of historical ocean observations used to examine the changing environment. Moving forward, IQuOD will continue to work with the ocean observation, data assimilation and ocean climate communities to further refine uncertainty quantification. We encourage submissions of metadata and information about historical practices to the IQuOD project and WOD.
    Description: Published
    Description: 689695
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-16
    Description: The increased concentration of greenhouse gases in the atmosphere from human activities traps heat within the climate system and increases ocean heat content (OHC). Here, we provide the first analysis of recent OHC changes through 2021 from two international groups. The world ocean, in 2021, was the hottest ever recorded by humans, and the 2021 annual OHC value is even higher than last year’s record value by 14 ± 11 ZJ (1 zetta J = 1021 J) using the IAP/CAS dataset and by 16 ± 10 ZJ using NCEI/NOAA dataset. The long-term ocean warming is larger in the Atlantic and Southern Oceans than in other regions and is mainly attributed, via climate model simulations, to an increase in anthropogenic greenhouse gas concentrations. The year-to-year variation of OHC is primarily tied to the El Niño-Southern Oscillation (ENSO). In the seven maritime domains of the Indian, Tropical Atlantic, North Atlantic, Northwest Pacific, North Pacific, Southern oceans, and the Mediterranean Sea, robust warming is observed but with distinct inter-annual to decadal variability. Four out of seven domains showed record-high heat content in 2021. The anomalous global and regional ocean warming established in this study should be incorporated into climate risk assessments, adaptation, and mitigation.
    Description: Published
    Description: 373–385
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: ocean warming
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-13
    Description: The needs of society and the emerging blue economy require access and integration of data and information for the construction of dedicated products. A “transparent and accessible ocean” is one of the key objectives of the Ocean Decade 2021–30. In this context, marine infrastructures become significant components of a global knowledge environment, enabling environmental assessment and providing the necessary data for scientifically valid actions to protect and restore ocean health, to use marine resources in a sustainable way. The data is collected, analyzed, organized, and used by people and their good use/reuse can be obtained with social practices, technological and physical agreements aimed at facilitating collaborative knowledge, decision-making, inference. The vision is a digital ocean data ecosystem made up of multiple, interoperable, and scalable components. The huge amount of data and the resulting products can drive the development of new knowledge as well as new applications and services. Predictive capabilities that derive from the digital ecosystem enable the implementation of services for real-time decision-making, multihazard warning systems, and advance marine space planning. The chapter develops following the progressive complexity and information content of products deriving from oceanic data: data cycle and data collections, data products, oceanic reanalysis. The chapter discusses the new challenges of data products and the complexity of deriving them.
    Description: Published
    Description: 197-280
    Description: 4A. Oceanografia e clima
    Keywords: 03.02. Hydrology ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-06
    Description: The historical archive of global ocean subsurface temperature contains a large proportion of poorly quality-controlled as well as biased data. As a result, efforts to analyze past ocean change and variability are confounded, as is the use of ocean data assimilation systems. Currently many data centers perform automated ‘quick and dirty QC’ – redoing the same job poorly many times around the world. There have been no previous efforts to form a clean and definitive and very much needed historical archive. No single group has the manpower and resources to do the job properly – thus international cooperation is needed. The IQuOD 6thh Workshop goals are to: 1. Obtain agreement for the AutoQC process for application to the next product version. 2. Plan for the next IQuOD product: what will it consist of and what do we need to complete to get to the next release.
    Description: Published
    Description: Non Refereed
    Keywords: ASFA_2015::O::Oceanographic instruments ; ASFA_2015::I::In situ temperature ; ASFA_2015::T::Temperature profiles ; ASFA_2015::Q::Quality control ; ASFA_2015::S::Subsurface water ; ASFA_2015::C::Conductivity-temperature-depth observations ; ASFA_2015::S::Salinity profiles ; ASFA_2015::X::XBTs ; ASFA_2015::M::Mechanical bathythermographs
    Repository Name: AquaDocs
    Type: Book/Monograph/Conference Proceedings
    Format: 37pp.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-06
    Description: The historical archive of global ocean subsurface temperature contains a large proportion of poorly quality-controlled as well as biased data. As a result, efforts to analyze past ocean change and variability are confounded, as is the use of ocean data assimilation systems. Currently many data centers perform automated ‘quick and dirty QC’ – redoing the same job poorly many times around the world. There have been no previous efforts to form a clean and definitive and very much needed historical archive. No single group has the manpower and resources to do the job properly – thus international cooperation is needed. The IQuOD 7th Workshop goals are to: 1. Ratify new co-Chairs. 2. Review work achieved so far. 3. Review IQuOD structure. 4. Plan for tasks for the coming 12-24 months.
    Description: Published
    Description: Non Refereed
    Keywords: ASFA_2015::O::Oceanographic instruments ; ASFA_2015::I::In situ temperature ; ASFA_2015::T::Temperature profiles ; ASFA_2015::Q::Quality control ; ASFA_2015::S::Subsurface water ; ASFA_2015::C::Conductivity-temperature-depth observations ; ASFA_2015::S::Salinity profiles ; ASFA_2015::X::XBTs ; ASFA_2015::M::Mechanical bathythermographs
    Repository Name: AquaDocs
    Type: Book/Monograph/Conference Proceedings
    Format: 34pp.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cowley, R., Killick, R. E., Boyer, T., Gouretski, V., Reseghetti, F., Kizu, S., Palmer, M. D., Cheng, L., Storto, A., Le Menn, M., Simoncelli, S., Macdonald, A. M., & Domingues, C. M. International Quality-Controlled Ocean Database (IQuOD) v0.1: the temperature uncertainty specification. Frontiers in Marine Science, 8, (2021): 689695, https://doi.org/10.3389/fmars.2021.689695.
    Description: Ocean temperature observations are crucial for a host of climate research and forecasting activities, such as climate monitoring, ocean reanalysis and state estimation, seasonal-to-decadal forecasts, and ocean forecasting. For all of these applications, it is crucial to understand the uncertainty attached to each of the observations, accounting for changes in instrument technology and observing practices over time. Here, we describe the rationale behind the uncertainty specification provided for all in situ ocean temperature observations in the International Quality-controlled Ocean Database (IQuOD) v0.1, a value-added data product served alongside the World Ocean Database (WOD). We collected information from manufacturer specifications and other publications, providing the end user with uncertainty estimates based mainly on instrument type, along with extant auxiliary information such as calibration and collection method. The provision of a consistent set of observation uncertainties will provide a more complete understanding of historical ocean observations used to examine the changing environment. Moving forward, IQuOD will continue to work with the ocean observation, data assimilation and ocean climate communities to further refine uncertainty quantification. We encourage submissions of metadata and information about historical practices to the IQuOD project and WOD.
    Description: This work was supported by the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580); and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. RC was supported through funding from the Earth Systems and Climate Change Hub of the Australian Government's National Environmental Science Program. RK and MP were supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra. CD was supported by the Australian Research Council (Discovery Grant DP160103130), ARC Centre of Excellence for Climate Extremes (CE170100023) and by the Natural Environment Research Council (TICTOC, NE/P019293/1). AM's contribution was supported by National Science Foundation grant OCE#-1923387 and National Oceanographic and Atmospheric Administration grant #NA16OAR4310172.
    Keywords: XBT ; Ocean temperature profiles ; Ocean data assimilation ; Ocean climate ; Accuracy ; Uncertainty ; Bias correction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goni, G. J., Sprintall, J., Bringas, F., Cheng, L., Cirano, M., Dong, S., Domingues, R., Goes, M., Lopez, H., Morrow, R., Rivero, U., Rossby, T., Todd, R. E., Trinanes, J., Zilberman, N., Baringer, M., Boyer, T., Cowley, R., Domingues, C. M., Hutchinson, K., Kramp, M., Mata, M. M., Reseghetti, F., Sun, C., Bhaskar, U., & Volko, D. More than 50 years of successful continuous temperature section measurements by the global expendable bathythermograph network, its integrability, societal benefits, and future. Frontiers in Marine Science, 6, (2019): 452, doi:10.3389/fmars.2019.00452.
    Description: The first eXpendable BathyThermographs (XBTs) were deployed in the 1960s in the North Atlantic Ocean. In 1967 XBTs were deployed in operational mode to provide a continuous record of temperature profile data along repeated transects, now known as the Global XBT Network. The current network is designed to monitor ocean circulation and boundary current variability, basin-wide and trans-basin ocean heat transport, and global and regional heat content. The ability of the XBT Network to systematically map the upper ocean thermal field in multiple basins with repeated trans-basin sections at eddy-resolving scales remains unmatched today and cannot be reproduced at present by any other observing platform. Some repeated XBT transects have now been continuously occupied for more than 30 years, providing an unprecedented long-term climate record of temperature, and geostrophic velocity profiles that are used to understand variability in ocean heat content (OHC), sea level change, and meridional ocean heat transport. Here, we present key scientific advances in understanding the changing ocean and climate system supported by XBT observations. Improvement in XBT data quality and its impact on computations, particularly of OHC, are presented. Technology development for probes, launchers, and transmission techniques are also discussed. Finally, we offer new perspectives for the future of the Global XBT Network.
    Description: GG, FB, SD, UR, MB, RD, and DV were supported by a grant from the NOAA/Ocean Observing and Monitoring Division (OOMD) and by NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML). The participation of JS and NZ in this study was supported by NOAA's Global Ocean Monitoring and Observing Program through Award NA15OAR4320071 and NSF Award 1542902. CD was funded by the Australian Research Council (FT130101532 and DP160103130); the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580); and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. LC was supported by 2016YFC1401800.
    Keywords: Expendable bathythermographs ; Surface currents ; Subsurface currents ; Meridional heat transport ; Ocean heat content ; Sea level ; Extreme weather
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M. Z., Landerer, F. W., Stammer, D., Koehl, A., Kato, S., L'Ecuyer, T., Ablain, M., Abraham, J. P., Blazquez, A., Cazenave, A., Church, J. A., Cowley, R., Cheng, L., Domingues, C. M., Giglio, D., Gouretski, V., Ishii, M., Johnson, G. C., Killick, R. E., Legler, D., Llovel, W., Lyman, J., Palmer, M. D., Piotrowicz, S., Purkey, S. G., Roemmich, D., Roca, R., Savita, A., von Schuckmann, K., Speich, S., Stephens, G., Wang, G., Wijffels, S. E., & Zilberman, N. Measuring global ocean heat content to estimate the Earth energy Imbalance. Frontiers in Marine Science, 6, (2019): 432, doi: 10.3389/fmars.2019.00432.
    Description: The energy radiated by the Earth toward space does not compensate the incoming radiation from the Sun leading to a small positive energy imbalance at the top of the atmosphere (0.4–1 Wm–2). This imbalance is coined Earth’s Energy Imbalance (EEI). It is mostly caused by anthropogenic greenhouse gas emissions and is driving the current warming of the planet. Precise monitoring of EEI is critical to assess the current status of climate change and the future evolution of climate. But the monitoring of EEI is challenging as EEI is two orders of magnitude smaller than the radiation fluxes in and out of the Earth system. Over 93% of the excess energy that is gained by the Earth in response to the positive EEI accumulates into the ocean in the form of heat. This accumulation of heat can be tracked with the ocean observing system such that today, the monitoring of Ocean Heat Content (OHC) and its long-term change provide the most efficient approach to estimate EEI. In this community paper we review the current four state-of-the-art methods to estimate global OHC changes and evaluate their relevance to derive EEI estimates on different time scales. These four methods make use of: (1) direct observations of in situ temperature; (2) satellite-based measurements of the ocean surface net heat fluxes; (3) satellite-based estimates of the thermal expansion of the ocean and (4) ocean reanalyses that assimilate observations from both satellite and in situ instruments. For each method we review the potential and the uncertainty of the method to estimate global OHC changes. We also analyze gaps in the current capability of each method and identify ways of progress for the future to fulfill the requirements of EEI monitoring. Achieving the observation of EEI with sufficient accuracy will depend on merging the remote sensing techniques with in situ measurements of key variables as an integral part of the Ocean Observing System.
    Description: GJ was supported by the NOAA Research. MP and RK were supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra. JC was partially supported by the Centre for Southern Hemisphere Oceans Research, a joint research centre between QNLM and CSIRO. CD and AS were funded by the Australian Research Council (FT130101532 and DP160103130) and its Centre of Excellence for Climate Extremes (CLEX). IQuOD team members (TB, RC, LC, CD, VG, MI, MP, and SW) were supported by the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by the National SCOR Committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580), as well as the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. ZZ was supported by the National Aeronautics and Space Administration (NNX17AH14G). LC was supported by the National Key Research and Development Program of China (2017YFA0603200 and 2016YFC1401800).
    Keywords: Ocean heat content ; Sea level ; Ocean mass ; Ocean surface fluxes ; ARGO ; Altimetry ; GRACE ; Earth Energy Imbalance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-09-14
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 35(2), (2022): 851–875, https://doi.org/10.1175/JCLI-D-20-0603.1.
    Description: The Earth system is accumulating energy due to human-induced activities. More than 90% of this energy has been stored in the ocean as heat since 1970, with ∼60% of that in the upper 700 m. Differences in upper-ocean heat content anomaly (OHCA) estimates, however, exist. Here, we use a dataset protocol for 1970–2008—with six instrumental bias adjustments applied to expendable bathythermograph (XBT) data, and mapped by six research groups—to evaluate the spatiotemporal spread in upper OHCA estimates arising from two choices: 1) those arising from instrumental bias adjustments and 2) those arising from mathematical (i.e., mapping) techniques to interpolate and extrapolate data in space and time. We also examined the effect of a common ocean mask, which reveals that exclusion of shallow seas can reduce global OHCA estimates up to 13%. Spread due to mapping method is largest in the Indian Ocean and in the eddy-rich and frontal regions of all basins. Spread due to XBT bias adjustment is largest in the Pacific Ocean within 30°N–30°S. In both mapping and XBT cases, spread is higher for 1990–2004. Statistically different trends among mapping methods are found not only in the poorly observed Southern Ocean but also in the well-observed northwest Atlantic. Our results cannot determine the best mapping or bias adjustment schemes, but they identify where important sensitivities exist, and thus where further understanding will help to refine OHCA estimates. These results highlight the need for further coordinated OHCA studies to evaluate the performance of existing mapping methods along with comprehensive assessment of uncertainty estimates.
    Description: AS is supported by a Tasmanian Graduate Research Scholarship, a CSIRO-UTAS Quantitative Marine Science top-up, and by the Australian Research Council (ARC) (CE170100023; DP160103130). CMD was partially supported by ARC (FT130101532) and the Natural Environmental Research Council (NE/P019293/1). RC was supported through funding from the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Program. TB is supported by the Climate Observation and Monitoring Program, National Oceanic and Atmosphere Administration, U.S. Department of commerce. GCJ and JML are supported by NOAA Research and the NOAA Ocean Climate Observation Program. This is PMEL contribution number 5065. JAC is supported by the Centre for Southern Hemisphere Oceans Research (CSHOR), jointly funded by the Qingdao National Laboratory for Marine Science and Technology (QNLM, China) and the Commonwealth Scientific and Industrial Research Organization (CSIRO, Australia) and Australian Research Council’s Discovery Project funding scheme (project DP190101173). The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). Data used in this study are available on request.
    Keywords: Bias ; Interpolation schemes ; In situ oceanic observations ; Uncertainty ; Oceanic variability ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...