GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 21
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2005. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 35 (2005): 2487-2500, doi:10.1175/JPO2832.1.
    Description: The buoyancy-driven circulation of simple two-layer models on the β plane is studied in order to examine the role of beta in determining the magnitude and structure of the vertical motions forced in response to surface heating and cooling. Both analytical and numerical approaches are used to describe the change in circulation pattern and strength as a consequence of the planetary vorticity gradient. The physics is quasigeostrophic at lowest order but is sensitive to small nonquasigeostrophic mass fluxes across the boundary of the basin. The height of the interface between the two layers serves as an analog of temperature, and the vertical velocity at the interface consists of a cross-isopycnal velocity, modeled in terms of a relaxation to a prescribed interface height, as well as an adiabatic representation of eddy thickness fluxes parameterized as lateral diffusion of interface displacement. In the numerical model the lateral eddy diffusion of heat is explicitly represented by a resolved eddy field. In the plausibly more realistic case, when the lateral diffusion of buoyancy dominates the diffusion of momentum, the major vertical velocities occur at the boundary of the basin as in earlier f-plane studies. The effect of the planetary vorticity gradient is to intensify the sinking at the western wall and to enhance the magnitude of that sinking with respect to the f-plane models. The vertical mass flux in the Sverdrup interior exactly balances the vertical flux in the region of the strong horizontal transport of the western boundary current, leaving the net flux to occur in a very narrow region near the western boundary tucked well within the western boundary current. On the other hand, if the lateral diffusion of heat is arbitrarily and unrealistically eliminated, the vertical mass flux is forced to occur in the interior. The circulation pattern is extremely sensitive to small net inflows or outflows across the basin perimeter. The cross-basin flux determines the interface height on the basin’s eastern boundary and affects the circulation pattern across the entire basin.
    Description: This research was supported in part by grants from the National Science Foundation OCE-9901654 (JP) and OCE-0240978, and Office of Naval Research Grant N00014-03-0338 (MAS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 2185-2198, doi:10.1175/JPO2967.1.
    Description: The time-dependent response of an ocean basin to the imposition of cooling (or heating) is examined in the context of a quasigeostrophic, two-layer model on the beta plane. The focus is on the structure and magnitude of the vertical motion and its response to both a switch-on forcing and a periodic forcing. The model employed is a time-dependent version of an earlier model used to discuss the intensification of sinking in the region of the western boundary current. The height of the interface of the two-layer model serves as an analog of temperature, and the vertical velocity at the interface consists of a cross-isopycnal velocity modeled in terms of a relaxation to a prescribed interface height, an adiabatic representation of eddy thickness fluxes parameterized as lateral diffusion of thickness, and the local vertical motion of the interface itself. The presence of time dependence adds additional dynamical features to the problem, in particular the emergence of low-frequency, weakly damped Rossby basin modes. If the buoyancy forcing is zonally uniform the basin responds to a switch-on of the forcing by coming into steady-state equilibrium after the passage of a single baroclinic Rossby wave. If the forcing is nonuniform in the zonal direction, a sequence of Rossby basin modes is excited and their decay is required before the basin achieves a steady state. For reasonable parameter values the boundary layers, in which both horizontal and vertical circulations are closed, are quasi-steady and respond to the instantaneous state of the interior. As in the steady problem the flow is sensitive to small nonquasigeostrophic mass fluxes across the perimeter of the basin. These fluxes generally excite basin modes as well. The basin modes will also be weakly excited if the beta-plane approximation is relaxed. The response to periodic forcing is also examined, and the sensitivity of the response to the structure of the forcing is similar to the switch-on problem.
    Description: This research was supported in part by NSF Grant OCE-9901654,
    Keywords: Vertical motion ; Ocean dynamics ; Buoyancy ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2168–2186, doi:10.1175/JPO-D-11-08.1.
    Description: This paper studies the interaction of an Antarctic Circumpolar Current (ACC)–like wind-driven channel flow with a continental slope and a flat-bottomed bay-shaped shelf near the channel’s southern boundary. Interaction between the model ACC and the topography in the second layer induces local changes of the potential vorticity (PV) flux, which further causes the formation of a first-layer PV front near the base of the topography. Located between the ACC and the first-layer slope, the newly formed PV front is constantly perturbed by the ACC and in turn forces the first-layer slope with its own variability in an intermittent but persistent way. The volume transport of the slope water across the first-layer slope edge is mostly directly driven by eddies and meanders of the new front, and its magnitude is similar to the maximum Ekman transport in the channel. Near the bay’s opening, the effect of the topographic waves, excited by offshore variability, dominates the cross-isobath exchange and induces a mean clockwise shelf circulation. The waves’ propagation is only toward the west and tends to be blocked by the bay’s western boundary in the narrow-shelf region. The ensuing wave–coast interaction amplifies the wave amplitude and the cross-shelf transport. Because the interaction only occurs near the western boundary, the shelf water in the west of the bay is more readily carried offshore than that in the east and the mean shelf circulation is also intensified along the bay’s western boundary.
    Description: Y. Zhang acknowledges the support of the MIT-WHOI Joint Program in Physical Oceanography and NSF OCE-9901654 and OCE- 0451086. J. Pedlosky acknowledges the support of NSF OCE-9901654 and OCE-0451086.
    Keywords: Baroclinic flows ; Eddies ; Fronts ; Mass fluxes/transport ; Mesoscale processes ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 643-646, doi:10.1175/JPO-D-17-0240.1.
    Description: A simple oceanic model is presented for source–sink flow on the β plane to discuss the pathways from source to sink when transport boundary layers have large enough Reynolds numbers to be inertial in their dynamics. A representation of the flow as a Fofonoff gyre, suggested by prior work on inertial boundary layers and eddy-driven circulations in two-dimensional turbulent flows, indicates that even when the source and sink are aligned along the same western boundary the flow must intrude deep into the interior before exiting at the sink. The existence of interior pathways for the flow is thus an intrinsic property of an inertial circulation and is not dependent on particular geographical basin geometry.
    Description: 2018-09-12
    Keywords: Abyssal circulation ; Bottom currents ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Potential vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2004. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 62 (2004): 169-193, doi:10.1357/002224004774201681.
    Description: It is well known that the barotropic, wind-driven, single-gyre ocean model reaches an inertially-dominated equilibrium with unrealistic circulation strength when the explicit viscosity is reduced to realistically low values. It is shown here that the overall circulation strength can be controlled nonlocally by retaining thin regions of enhanced viscosity parameterizing the effects of increased mixing and topographic interaction near the boundaries. The control is possible even when the inertial boundary layer width is larger than the enhanced viscosity region, as eddy fluxes of vorticity from the interior transport vorticity across the mean streamlines of the inertial boundary current to the frictional region. In relatively inviscid calculations the eddies are the major means of flux across interior mean streamlines.
    Description: B.F.-K. was supported in part by an ONR-supported NDSEG Fellowship, an MIT Presidential Fellowship, a GFDL/Princeton University postdoctoral fellowship, and a NOAA Climate and Global Change postdoctoral fellowship (managed by UCAR). Both authors were supported in part by NSF OCE 9910654.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 753053 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1551-1573, doi:10.1175/2008JPO4152.1.
    Description: A conceptually simple model is presented for predicting the amplitude and periodicity of eddies generated by a steady poleward outflow in a 1½-layer β-plane formulation. The prediction model is rooted in linear quasigeostrophic dynamics but is capable of predicting the amplitude of the β plume generated by outflows in the nonlinear range. Oscillations in the plume amplitude are seen to represent a near-zero group velocity response to an adjustment process that can be traced back to linear dynamics. When the plume-amplitude oscillations become large enough so that the coherent β plume is replaced by a robust eddy field, the eddy amplitude is still constrained by the plume-amplitude prediction model. The eddy periodicity remains close to that of the predictable, near-zero group-velocity linear oscillations. Striking similarities between the patterns of variability in the model and observations south of Indonesia’s Lombok Strait suggest that the processes investigated in this study may play an important role in the generation of the observed eddy field of the Indo-Australian Basin.
    Description: This work was completed at the Woods Hole Oceanographic Institution while TS Durland was supported by the Ocean and Climate Change Institute. MA Spall was supported by NSF Grant OCE-0423975 and J Pedlosky by NSF Grant OCE-0451086. TS Durland acknowledges additional report preparation support from NASA Grant NNG05GN98G.
    Keywords: Eddies ; Intraseasonal variability ; Nonlinear models ; Shallow-water equations ; Plumes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2005. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 35 (2005): 363-373, doi:10.1175/JPO-2691.1.
    Description: The interaction of equatorial Rossby waves with a western boundary perforated with one or more narrow gaps is investigated using a shallow-water numerical model and supporting theory. It is found that very little of the incident energy flux is reflected into eastward-propagating equatorial Kelvin waves provided that at least one gap is located within approximately a deformation radius of the equator. Because of the circulation theorem around an island, the existence of a second gap off the equator reduces the reflection of short Rossby waves and enhances the transmission of the incident energy into the western basin. The westward energy transmitted past the easternmost island is further reduced upon encountering islands to the west, even if these islands are located entirely within the “shadow” of the easternmost island. A localized patch of wind forcing was also used to generate low-frequency Rossby waves for cases with island configurations representative of the western equatorial Pacific. For both idealized islands and a coastline based on the 200-m isobath, the amount of incident energy reflected into Kelvin waves depends on both the duration of the wind event and the meridional decay scale of the anomalous winds. For wind events of 2-yr duration with a meridional decay scale of 700 km, the reflected energy is 37% of the incident flux, and the energy transmitted into the Indian Ocean is approximately 10% of the incident flux, very close to that predicted by previous theories. For shorter wind events or winds confined more closely to the equator the reflected energy is significantly less.
    Description: This work was supported by the Office of Naval Research under Grant N00014-03-1- 0338 (MAS) and by the National Science Foundation under Grants OCE-0240978 (MAS) and OCE-9901654 (JP).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-25
    Description: Author Posting. © Yale University, 2011. This article is posted here by permission of Yale University for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 69 (2011): 347-382, doi:10.1357/002224011798765222.
    Description: The flow around a planetary scale island in a baroclinic ocean is examined when the island possesses a topographic skirt representing a steep continental slope and the ocean is modeled as a two-layer system in order to examine the role of stratification in the circulation. The study extends an earlier barotropic model of similar geometry and forcing to focus on the degree to which the topography, limited here to the lower of the two layers, affects the circulation and to what degree the circulation is shielded by stratification from the topographic effects noted in the simpler barotropic model. As in the barotropic model, the topography is steep enough to produce closed, ambient potential vorticity contours over the topography in the lower layer providing free "highways" for the deep flow in the presence of small forcing by the wind-driven upper layer flow. The flow is very weak outside the region of closed contours but can become of the same order, if somewhat smaller, as the upper layer flow on those contours in the presence of even weak coupling to the upper layer. A series of models, analytical and numerical, are studied. Linear theory is applied to two configurations. The first consists of a long, meridionally oriented island with a topographic skirt in the lower layer. The lower layer flow is driven by a hypothesized frictional coupling between the two layers that depends on the circulation of the upper layer velocity on a circuit defined by the closed potential vorticity contours of the lower layer. The largest part of the driving flow is identical on both sides of the island and cancels in the contour integration. The major part of the residual forcing comes from relatively small but effective forcing on the semi-circular tips of the topographic skirt. A circular island with a topographic skirt is also examined in which the coupling to the upper layer is stronger all around the island. Even in this case there is a delicate balance of the forcing of the lower layer on each side of the island. In all cases the flow on closed potential vorticity contours in the lower layer is much weaker than in the barotropic model but much stronger than in the flat region of the lower layer. A sequence of numerical calculations that both check and extend the analytic linear theory is presented demonstrating the subtlety of the force balances. Further nonlinear, eddy-containing experiments give a preview of the direction of future work.
    Description: This research was supported in part by a grant from the National Science Foundation (JP) NSF OCE 0925061 and (MAS) NSF OCE 0926656.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1028–1041, doi:10.1175/JPO-D-12-0159.1.
    Description: The circulation induced by the interaction of surface Ekman transport with an island is considered using both numerical models and linear theory. The basic response is similar to that found for the interaction of Ekman layers and an infinite boundary, namely downwelling (upwelling) in narrow boundary layers and deformation-scale baroclinic boundary layers with associated strong geostrophic flows. The presence of the island boundary, however, allows the pressure signal to propagate around the island so that the regions of upwelling and downwelling are dynamically connected. In the absence of stratification the island acts as an effective barrier to the Ekman transport. The presence of stratification supports baroclinic boundary currents that provide an advective pathway from one side of the island to the other. The resulting steady circulation is quite complex. Near the island, both geostrophic and ageostrophic velocity components are typically large. The density anomaly is maximum below the surface and, for positive wind stress, exhibits an anticyclonic phase rotation with depth (direction of Kelvin wave propagation) such that anomalously warm water can lie below regions of Ekman upwelling. The horizontal and vertical velocities exhibit similar phase changes with depth. The addition of a sloping bottom can act to shield the deep return flow from interacting with the island and providing mass transport into/out of the surface Ekman layer. In these cases, the required transport is provided by a pair of recirculation gyres that connect the narrow upwelling/downwelling boundary layers on the eastern and western sides of the island, thus directly connecting the Ekman transport across the island.
    Description: This study was supported by the National Science Foundation under Grants OCE-0826656 and OCE-0959381 (MAS), and OCE-0925061 (JP).
    Description: 2013-11-01
    Keywords: Coastal flows ; Ekman pumping/transport ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1398–1406, doi:10.1175/JPO-D-13-028.1.
    Description: An adiabatic, inertial, and quasigeostrophic model is used to discuss the interaction of surface Ekman transport with an island. The theory extends the recent work of Spall and Pedlosky to include an analytical and nonlinear model for the interaction. The presence of an island that interrupts a uniform Ekman layer transport raises interesting questions about the resulting circulation. The consequential upwelling around the island can lead to a local intake of fluid from the geostrophic region beneath the Ekman layer or to a more complex flow around the island in which the fluid entering the Ekman layer on one portion of the island's perimeter is replaced by a flow along the island's boundary from a downwelling region located elsewhere on the island. This becomes especially pertinent when the flow is quasigeostrophic and adiabatic. The oncoming geostrophic flow that balances the offshore Ekman flux is largely diverted around the island, and the Ekman flux is fed by a transfer of fluid from the western to the eastern side of the island. As opposed to the linear, dissipative model described earlier, this transfer takes place even in the absence of a topographic skirt around the island. The principal effect of topography in the inertial model is to introduce an asymmetry between the circulation on the northern and southern sides of the island. The quasigeostrophic model allows a simple solution to the model problem with topography and yet the resulting three-dimensional circulation is surprisingly complex with streamlines connecting each side of the island.
    Description: This research was supported in part by NSF Grant OCE Grant 0925061.
    Keywords: Baroclinic flows ; Large-scale motions ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...