GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 11
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Luo, Yawei; Doney, Scott C; Anderson, L A; Benavides, Mar; Berman-Frank, I; Bode, Antonio; Bonnet, S; Boström, Kjärstin H; Böttjer, D; Capone, D G; Carpenter, E J; Chen, Yaw-Lin; Church, Matthew J; Dore, John E; Falcón, Luisa I; Fernández, A; Foster, R A; Furuya, Ken; Gomez, Fernando; Gundersen, Kjell; Hynes, Annette M; Karl, David Michael; Kitajima, Satoshi; Langlois, Rebecca; LaRoche, Julie; Letelier, Ricardo M; Marañón, Emilio; McGillicuddy Jr, Dennis J; Moisander, Pia H; Moore, C Mark; Mouriño-Carballido, Beatriz; Mulholland, Margaret R; Needoba, Joseph A; Orcutt, Karen M; Poulton, Alex J; Rahav, Eyal; Raimbault, Patrick; Rees, Andrew; Riemann, Lasse; Shiozaki, Takuhei; Subramaniam, Ajit; Tyrrell, Toby; Turk-Kubo, Kendra A; Varela, Manuel; Villareal, Tracy A; Webb, Eric A; White, Angelicque E; Wu, Jingfeng; Zehr, Jonathan P (2012): Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth System Science Data, 4, 47-73, https://doi.org/10.5194/essd-4-47-2012
    Publication Date: 2023-12-09
    Description: The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs abundance and biomass, computed from a collection of source data sets.
    Keywords: 33KB20020923; 33RR20030714; A2/19921126; A2/1992-11-27; AMT8/1999-05-05; AMT8/1999-05-06; AMT8/1999-05-07; AMT8/1999-05-08; AMT8/1999-05-10; AMT8/1999-05-12; AMT8/1999-05-13; AMT8/1999-05-18; AMT8/1999-05-20; AMT8/1999-05-21; AMT8/1999-05-23; AMT8/1999-05-25; AMT8/1999-05-26; AMT8/1999-05-28; AMT8/1999-05-29; AT19641122; AT19641123; AT19641202; AT19641203; AT19641208; Atlantic; Barbados; Barbados_1974-07-09_1; Barbados_1974-07-16_1; Barbados_1974-07-23_1; Barbados_1974-07-28_1; Barbados_1974-08-07_1; Barbados_1974-08-11_1; Barbados_1974-08-21_1; Barbados_1974-08-27_1; Barbados_1974-09-03_1; Barbados_1974-09-10_1; Barbados_1974-09-17_1; Barbados_1974-09-24_1; Barbados_1974-10-03_1; Barbados_1974-10-08_1; Barbados_1974-10-15_1; Barbados_1974-10-22_1; Barbados_1974-10-29_1; Barbados_1974-11-05_1; Barbados_1974-11-12_1; Barbados_1974-11-19_1; Barbados_1974-11-29_1; Barbados_1974-12-03_1; Barbados_1974-12-10_1; Barbados_1974-12-17_1; Barbados_1974-12-23_1; Barbados_1974-12-30_1; Barbados_1975-01-07_1; Barbados_1975-01-14_1; Barbados_1975-01-21_1; Barbados_1975-01-31_1; Barbados_1975-02-04_1; Barbados_1975-02-11_1; Barbados_1975-02-15_1; Barbados_1975-03-05_1; Barbados_1975-03-18_1; Barbados_1975-04-01_1; Barbados_1975-04-18_1; Barbados_1975-04-29_1; Barbados_1975-05-13_1; Barbados_1975-05-21_1; Barbados_1975-05-27_1; Barbados_1975-06-10_1; Barbados_1975-06-24_1; Barbados_1975-07-08_1; Barbados_1975-08-05_1; Barbados_1975-08-25_1; Barbados_1975-10-15_1; Barbados_1975-11-17_1; Barbados_1975-12-10_1; Barbados_1976-01-02_1; Barbados_1976-01-19_1; Barbados_1976-02-10_1; Barbados_1976-03-12_1; Barbados_1976-04-15_1; Barbados_1976-05-14_1; BATS1995-05-15; BATS1996-10-10; Bermuda, Atlantic Ocean; Bottle, Niskin; CAIBEX-I; CAIBEX-I_2; CAIBEX-I_3; CAIBEX-I_5; CAIBEX-I_6; CAIBEX-II; CAIBEX-II_01; CAIBEX-II_02; CAIBEX-II_03; CAIBEX-II_04; CAIBEX-II_05; CAIBEX-II_06; CAIBEX-II_07; CAIBEX-II_08; CAIBOX; CAIBOX_01; CAIBOX_02; CAIBOX_03; CAIBOX_04; CAIBOX_05; CAIBOX_06; CAIBOX_07; CAIBOX_08; CAIBOX_09; CAIBOX_10; CAIBOX_11; CAIBOX_12; CAIBOX_13; CAIBOX_14; CAIBOX_15; CAIBOX_16; CAIBOX_17; Calculated; Calothrix, associated species; Calothrix, carbon per cell; Calothrix abundance, cells; China Sea; Chlorophyll total, areal concentration; CTD, Seabird; CTD/Rosette; CTD-R; CTD-RO; Date/Time of event; Depth, bottom/max; Depth, top/min; DEPTH, water; Diazotrophs, total biomass as carbon; East China Sea; ECS1993-11-15_1; ECS1993-11-15_2; ECS1993-11-15_3; ECS1993-11-15_4; ECS1993-11-15_5; ECS1993-11-15_6; ECS1994-03-15_1; ECS1994-03-15_2; ECS1994-03-15_3; ECS1994-03-15_4; ECS1994-03-15_5; ECS1994-05-05_1; ECS1994-05-05_2; ECS1994-07-05_1; ECS1994-07-05_2; ECS1994-07-05_3; ECS1994-07-05_4; ECS1995-03-28_1; ECS1995-03-28_2; ECS1995-04-17_1; ECS1995-04-17_2; ECS1995-04-17_3; ECS1995-04-17_4; ECS1995-04-17_5; ECS1995-10-01_1; ECS1995-10-01_10; ECS1995-10-01_11; ECS1995-10-01_12; ECS1995-10-01_13; ECS1995-10-01_2; ECS1995-10-01_3; ECS1995-10-01_4; ECS1995-10-01_5; ECS1995-10-01_6; ECS1995-10-01_7; ECS1995-10-01_8; ECS1995-10-01_9; ECS1996-01-04; ECS1996-04-26_1; ECS1996-04-26_2; ECS1996-04-26_3; ECS1996-04-26_4; ECS1996-04-26_5; ECS1996-04-26_6; ECS1996-04-26_7; ECS1996-04-26_8; ECS1996-04-26_9; Event label; GOFLO; Go-Flo bottles; Gomez2004-10-26; Gomez2004-10-30; Gomez2004-11-03; Gomez2004-11-07; Gomez2004-11-11; Gomez2004-11-15; Gomez2004-11-19; Gomez2004-11-23; Gomez2004-11-27; Gomez2004-12-01; Gomez2004-12-05; Gomez2004-12-09; HakuhoMaru2002-12-07; HakuhoMaru2002-12-09; HakuhoMaru2002-12-11; HakuhoMaru2002-12-13; HakuhoMaru2002-12-15; HakuhoMaru2002-12-17; HakuhoMaru2002-12-18; Heterocyst, biomass; Indian Ocean; Iron; Latitude of event; Longitude of event; MAREMIP; MARine Ecosystem Model Intercomparison Project; Measured at sea surface; Meville2002-06-24; Meville2002-06-26; Meville2002-06-28; Meville2002-06-30; Meville2002-07-02; Meville2002-07-03; Meville2002-07-04; Meville2002-07-05; Meville2002-07-06; Meville2002-07-07; Meville2002-07-08; Meville2002-07-11; Meville2002-07-12; Mirai2003-01-15; Mirai2003-01-17; Mirai2003-01-18; Mirai2003-01-20; Mirai2003-01-21; Mirai2003-01-23; Mirai2003-01-24; Mirai2003-01-26; Mirai2003-01-28; MP-6; MP-6_01; MP-6_02; MP-6_03; MP-6_04; MP-6_05; MP-6_06; MP-6_07; MP-6_08; MP-6_09; MP-6_10; MP-6_11; MP-6_12; MP-6_13; MP-6_14; MP-6_15; MP-6_16; MP-6_17; MP-6_19; MP-6_20; MP-6_21; MP-6_22; MP-6_23; MP-9; MP-9_01; MP-9_02; MP-9_03; MP-9_04; MP-9_05; MP-9_06; MP-9_08; MP-9_09; MP-9_10; MP-9_11; MP-9_12; MP-9_13; MP-9_14; MP-9_15; MP-9_16; MP-9_17; MP-9_18; MP-9_19; MP-9_20; MP-9_21; MP-9_22; MP-9_23; MP-9_24; MP-9_25; MP-9_27; MULT; Multiple investigations; MW19950822_21; NA1975-05-25; NA19750526; NA19750527; NA19750528; NA1975-05-29; NA19750530; NA19750531; NA1975-06-01; NA1975-06-02; NA1975-06-03; NA1975-06-04; NA1975-06-05; NA1975-06-06; NewHorizon2003-08-22; NewHorizon2003-08-25; NewHorizon2003-08-26; NewHorizon2003-08-27; NewHorizon2003-08-28; NewHorizon2003-08-30; NewHorizon2003-08-31; NewHorizon2003-09-01; NewHorizon2003-09-03; NewHorizon2003-09-04; NewHorizon2003-09-05; NewHorizon2003-09-07; NewHorizon2003-09-08; NewHorizon2003-09-09; NewHorizon2003-09-11; NewHorizon2003-09-12; NewHorizon2003-09-13; NewHorizon2003-09-14; NIS; Nitrate; North Atlantic; Northeast Atlantic; North Pacific; North Pacific Ocean; Northwest Pacific; NPO1969-08-28; NPO1969-09-01; NPO1969-09-05; NPO1969-09-09; NPO1969-09-11; NPO1969-09-14; NPO1969-09-17; NPO1969-09-19; NPO1969-09-23; NPO1969-09-27; NPO1969-10-01; NPO1969-10-05; NPO1969-10-10; NWP2002-10-21_1; NWP2002-10-21_2; NWP2002-10-21_3; NWP2002-10-21_4; NWP2002-10-21_5; NWP2004-02-11; NWP2004-02-22; NWP2004-05-05; NWP2004-06-26; NWP2004-06-30; NWP2004-07-04; NWP2004-08-07; NWP2004-11-06; NWP2005-03-31; NWP2005-04-22; NWP2005-04-23; NWP2005-04-24; NWP2005-04-25_1; NWP2005-04-25_2; NWP2005-04-26; NWP2005-04-27; NWP2005-04-28; NWP2005-04-29; NWP2005-04-30_1; NWP2005-04-30_2; NWP2005-05-01; NWP2005-08-10; NWP2005-08-15; NWP2005-11-10; NWP2005-12-26; NWP2006-07-03; NWP2006-10-21; NWP2006-12-20; NWP2006-12-25; NWP2007-01-15; OR-I/414_1; OR-I/414_2; OR-I/448; OR-II/034; OR-II/111_1; OR-II/111_2; OR-II/149_1; OR-II/149_2; Phosphate; Richelia, associated species; Richelia, carbon per cell; Richelia abundance, cells; Roger A. Revelle; RV Kilo Moana; Salinity; Sample comment; Sample method; Sargasso Sea; SargassoSea_1973-09-17; SargassoSea_1973-09-19; SargassoSea_1973-09-20; SargassoSea_1973-09-21; SargassoSea_1973-09-28; SargassoSea_1973-09-29; SargassoSea_1973-10-01; SargassoSea_1973-10-02; SargassoSea_1973-10-03; SargassoSea_1974-02-06; SargassoSea_1974-02-08; SargassoSea_1974-02-11; SargassoSea_1974-02-12; SargassoSea_1974-02-13; SargassoSea_1974-02-14; SargassoSea_1974-02-16; SargassoSea_1974-02-17; SargassoSea_1974-02-18; SargassoSea_1974-02-19; SargassoSea_1974-02-20; SargassoSea_1974-02-21; SargassoSea_1974-02-22; SargassoSea_1974-02-26; SargassoSea_1974-02-27; SargassoSea_1974-03-01; SargassoSea_1974-03-02; SargassoSea_1974-03-03; SargassoSea_1974-03-04; SargassoSea_1974-03-05; SargassoSea_1974-08-08; SargassoSea_1974-08-09; SargassoSea_1974-08-10_1; SargassoSea_1974-08-10_2; SargassoSea_1974-08-11; SargassoSea_1974-08-12; SargassoSea_1974-08-13; SargassoSea_1974-08-14; SargassoSea_1974-08-15; SargassoSea_1974-08-16; SargassoSea_1974-08-17; SargassoSea_1974-08-18; SargassoSea_1974-08-19; SargassoSea_1974-08-20; SargassoSea_1974-08-21; Sarmiento de Gamboa; SCS2000-07-04; SCS2000-07-08; SCS2000-07-12; SCS2000-10-05; SCS2000-10-06; SCS2000-10-07; SCS2000-10-08; SCS2000-10-09; SCS2000-10-10; SCS2000-10-11; SCS2000-10-12; SCS2001-03-21; SCS2001-03-22; SCS2001-03-23; SCS2001-03-24; SCS2001-03-25; SCS2001-03-26; SCS2001-03-27; SCS2001-03-28; SCS2001-03-29; SCS2001-03-30; SCS2001-06-28; SCS2001-06-30; SCS2001-07-02; SCS2001-07-04; SCS2001-07-06; SCS2001-10-23; SCS2001-10-25; SCS2001-10-27; SCS2001-10-29; SCS2001-10-31; SCS2002-03-04; SCS2002-03-05; SCS2002-03-06; SCS2002-03-07; SCS2002-03-08; SCS2002-03-09; SCS2002-03-10;
    Type: Dataset
    Format: text/tab-separated-values, 8546 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Luo, Yawei; Doney, Scott C; Anderson, L A; Benavides, Mar; Berman-Frank, I; Bode, Antonio; Bonnet, S; Boström, Kjärstin H; Böttjer, D; Capone, D G; Carpenter, E J; Chen, Yaw-Lin; Church, Matthew J; Dore, John E; Falcón, Luisa I; Fernández, A; Foster, R A; Furuya, Ken; Gomez, Fernando; Gundersen, Kjell; Hynes, Annette M; Karl, David Michael; Kitajima, Satoshi; Langlois, Rebecca; LaRoche, Julie; Letelier, Ricardo M; Marañón, Emilio; McGillicuddy Jr, Dennis J; Moisander, Pia H; Moore, C Mark; Mouriño-Carballido, Beatriz; Mulholland, Margaret R; Needoba, Joseph A; Orcutt, Karen M; Poulton, Alex J; Rahav, Eyal; Raimbault, Patrick; Rees, Andrew; Riemann, Lasse; Shiozaki, Takuhei; Subramaniam, Ajit; Tyrrell, Toby; Turk-Kubo, Kendra A; Varela, Manuel; Villareal, Tracy A; Webb, Eric A; White, Angelicque E; Wu, Jingfeng; Zehr, Jonathan P (2012): Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth System Science Data, 4, 47-73, https://doi.org/10.5194/essd-4-47-2012
    Publication Date: 2023-12-18
    Description: The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs nitrogen fixation rates, computed from a collection of source data sets.
    Keywords: 33KB20020923; 33RR20030714; Alis; ALOHA2000-07-26; ALOHA2000-11-30; ALOHA2001-03-21; ALOHA2001-06-14; ALOHA2004-11-28; ALOHA2005-02-02; ALOHA2005-03-05; ALOHA2005-06-15; ALOHA2005-07-16; ALOHA2005-08-14; ALOHA2005-09-09; ALOHA2005-10-08; ALOHA2005-11-16; ALOHA2005-12-13; ALOHA2006-01-25; ALOHA2006-02-15; ALOHA2006-03-10; ALOHA2006-04-01; ALOHA2006-05-26; ALOHA2006-06-13; ALOHA2006-07-12; ALOHA2006-08-08; ALOHA2006-09-15; ALOHA2006-10-19; ALOHA2006-11-08; ALOHA2006-12-09; ALOHA2007-02-06; ALOHA2007-03-20; ALOHA2007-05-03; ALOHA2007-06-09; ALOHA2007-07-07; ALOHA2007-08-02; ALOHA2007-09-02; ALOHA2007-12-20; ALOHA2008-01-28; ALOHA2008-02-23; ALOHA2008-05-27; ALOHA2008-06-25; ALOHA2008-07-26; ALOHA2008-08-17; ALOHA2008-10-11; ALOHA2008-12-01; ALOHA2009-01-21; ALOHA2009-02-18; ALOHA2009-04-29; ALOHA2009-05-28; ALOHA2009-07-04; ALOHA2009-07-25; ALOHA2009-09-26; ALOHA2009-11-05; ALOHA2010-04-08; ALOHA2010-05-20; ALOHA2010-06-10; ALOHA2010-07-10; ALOHA2010-08-09; ALOHA2010-09-05; ALOHA2010-10-05; AMT17/01; AMT17/02; AMT17/03; AMT17/04; AMT17/05; AMT17/06; AMT17/07; AMT17/08; AMT17/09; AMT17/10; Arabian Sea; AT19641122; AT19641123; AT19641202; AT19641203; Atalante20080627; Atalante20080628; Atalante20080704; Atalante20080705; Atalante20080709/1; Atalante20080710; Atalante20080712; Atalante20080713; Atalante20080714; Atlantic; BIOSOPE_EGY; BIOSOPE_GYR; BIOSOPE_HLNC; BIOSOPE_MAR; BIOSOPE_UPW; BIOSOPE04-10-28; BIOSOPE04-10-30; BIOSOPE04-11-03; BIOSOPE04-11-04; BIOSOPE04-11-06; BIOSOPE04-11-07; BIOSOPE04-11-08; BIOSOPE04-11-10; BIOSOPE04-11-12; BIOSOPE04-11-20; BIOSOPE04-11-21; BIOSOPE04-11-23; BIOSOPE04-11-24; BIOSOPE04-11-28; BIOSOPE04-12-01; BIOSOPE04-12-02; BIOSOPE04-12-03; BIOSOPE04-12-04; BIOSOPE04-12-05; Bottle, Niskin; CAIBEX-I; CAIBEX-I_1; CAIBEX-I_2; CAIBEX-I_3; CAIBEX-I_4; CAIBEX-I_5; CAIBEX-I_6; CAIBEX-I_7; CAIBEX-II; CAIBEX-II_01; CAIBEX-II_02; CAIBEX-II_03; CAIBEX-II_04; CAIBEX-II_05; CAIBEX-II_06; CAIBEX-II_07; CAIBEX-II_08; CAIBOX; CAIBOX_01; CAIBOX_02; CAIBOX_03; CAIBOX_04; CAIBOX_05; CAIBOX_06; CAIBOX_07; CAIBOX_08; CAIBOX_09; CAIBOX_10; CAIBOX_11; CAIBOX_12; CAIBOX_13; CAIBOX_14; CAIBOX_15; CAIBOX_16; CAIBOX_17; Calculated; Cape Verde; CATO-I/9; Chlorophyll total, areal concentration; CLIMAX_VII/1973-08-18; CLIMAX_VII/1973-08-27; CLIMAX_VII/1973-08-29; CLIMAX_VII/1973-08-31; CLIMAX_VII/1973-09-02; CLIMAX_VII/1973-09-04; CLIMAX_VII/1973-09-07; CLIMAX_VII/1973-09-09; Cook25_7; CTD/Rosette; CTD-RO; D325_Stn-A-01; D325_Stn-C-01; D325_Stn-D-07; D325_Stn-E-01; D325_Stn-F-07; Date/Time of event; Depth, bottom/max; Depth, top/min; DEPTH, water; Diapalis-3; Diapalis-3_1; Diapalis-3_2; Diapalis-3_3; Diapalis-3_4; Diapalis-4; Diapalis-4_1; Diapalis-4_2; Diapalis-4_3; Diapalis-4_4; Diapalis-5; Diapalis-5_1; Diapalis-5_3; Diapalis-5_4; Diapalis-5_5; Diapalis-6; Diapalis-6_1; Diapalis-6_2; Diapalis-6_3; Diapalis-6_4; Diapalis-6_5; Diapalis-6_6; Diapalis-7; Diapalis-7_1; Diapalis-7_2; Diapalis-7_3; Diapalis-7_4; Diapalis-7_6; Diapalis-7_7; Diapalis-9; Diapalis-9_1; Diapalis-9_2; Diapalis-9_3; Diapalis-9_4; Diapalis-9_5; DIAPAZON_Diapalis-3; DIAPAZON_Diapalis-4; DIAPAZON_Diapalis-5; DIAPAZON_Diapalis-6; DIAPAZON_Diapalis-7; DIAPAZON_Diapalis-9; DYFAMED2003-03-26; DYFAMED2003-03-30; DYFAMED2004-01-25; DYFAMED2004-02-24; DYFAMED2004-04-25; DYFAMED2004-05-27; DYFAMED2004-07-01; DYFAMED2004-07-31; DYFAMED2004-08-31; DYFAMED2004-09-18; DYFAMED2004-10-14; Equatorial Pacific; Event label; GoA_StnA2010-03-18; GOFLO; Go-Flo bottles; Gulf of Aqaba; Gundersen_1; Gundersen_2; Hawaiian Islands, North Central Pacific; Hesperides_03a; Hesperides_05a; Hesperides_06a; Hesperides_07a; Hesperides_08a; Hesperides_12a; Hesperides_13a; Hesperides_14a; Hesperides_17a; Hesperides_18a; Hesperides_19a; Hesperides_20a; Hesperides_21a; Hesperides_23a; Hesperides_24a; Hesperides_25a; Hesperides_26a; Hesperides_27a; Hesperides_28a; Hesperides_29a; Hesperides_30a; Hesperides_31a; Hesperides_32a; Hesperides_33a; Hesperides_34a; Hesperides_36a; Hesperides_37a; Hesperides_38a; Hesperides_39a; Hesperides_40a; Hesperides_41a; Hesperides_42a; Heterocyst, nitrogen fixation rate; Iron; KiloMoana20060609/1; KiloMoana20060609/2; KiloMoana20060821; KiloMoana20060826; KiloMoana20060922; KiloMoana20060923; KiloMoana20060925; KiloMoana20060927; KiloMoana20060930; KiloMoana20061009; Latitude of event; LB2008-09-12; LB2008-09-16; Levantine Basin; Ligurian Sea, Mediterranean; Longitude of event; MAREMIP; MARine Ecosystem Model Intercomparison Project; Measured at sea surface; Mediterranean Sea; Mooring (long time); MOORY; MP-6; MP-6_01; MP-6_02; MP-6_03; MP-6_04; MP-6_05; MP-6_06; MP-6_07; MP-6_08; MP-6_09; MP-6_10; MP-6_11; MP-6_12; MP-6_13; MP-6_14; MP-6_15; MP-6_16; MP-6_18; MP-6_19; MP-6_20; MP-6_21; MP-6_22; MP-6_23; MP-9; MP-9_01; MP-9_02; MP-9_03; MP-9_04; MP-9_05; MP-9_06; MP-9_07; MP-9_09; MP-9_10; MP-9_11; MP-9_12; MP-9_13; MP-9_14; MP-9_15; MP-9_16; MP-9_17; MP-9_18; MP-9_19; MP-9_20; MP-9_21; MP-9_22; MP-9_23; MP-9_24; MP-9_25; MP-9_26; MP-9_27; MR07-01/02; MR07-01/03; MR07-01/04; MR07-01/05; MR07-01/06; MR07-01/07; MR07-01/08; MR07-01/09; MR07-01/10; MR07-01/11; Mulholland_2006-07-01; Mulholland_2006-07-02; Mulholland_2006-07-03; Mulholland_2006-07-04; Mulholland_2006-07-05; Mulholland_2006-07-06; Mulholland_2006-07-07; Mulholland_2006-07-08; Mulholland_2006-07-09; Mulholland_2006-07-10; Mulholland_2006-07-11; Mulholland_2006-07-12; Mulholland_2006-07-13; Mulholland_2006-07-14; Mulholland_2006-10-25; Mulholland_2006-10-26; Mulholland_2006-10-27; Mulholland_2006-10-28; Mulholland_2006-10-29; Mulholland_2006-10-30; Mulholland_2006-10-31; Mulholland_2006-11-01; Mulholland_2006-11-02; Mulholland_2006-11-03; Mulholland_2006-11-04; Mulholland_2006-11-05; Mulholland_2006-11-06; Mulholland_2006-11-07; Mulholland_2006-11-08; Mulholland_2006-11-09; Mulholland_2008-05-03_1; Mulholland_2008-05-04_1; Mulholland_2008-05-05_1; Mulholland_2008-05-05_2; Mulholland_2008-05-06_1; Mulholland_2008-05-07_1; Mulholland_2008-05-10_1; Mulholland_2008-05-11_1; Mulholland_2008-05-12_1; Mulholland_2008-05-13_1; Mulholland_2008-05-14_1; Mulholland_2008-05-15_1; Mulholland_2008-05-16_1; Mulholland_2008-05-17_1; Mulholland_2008-05-18_1; Mulholland_2008-05-19_1; Mulholland_2008-05-20_1; Mulholland_2008-05-21_1; Mulholland_2008-05-22_1; Mulholland_2008-05-24_1; Mulholland_2009-08-17_1; Mulholland_2009-08-18_1; Mulholland_2009-08-18_2; Mulholland_2009-08-19_1; Mulholland_2009-08-19_2; Mulholland_2009-08-20_1; Mulholland_2009-08-20_3; Mulholland_2009-08-21_1; Mulholland_2009-08-21_3; Mulholland_2009-08-22_1; Mulholland_2009-08-22_3; Mulholland_2009-08-23; Mulholland_2009-08-24_1; Mulholland_2009-08-24_3; Mulholland_2009-08-25_3; Mulholland_2009-08-26_3; Mulholland_2009-08-27_2; Mulholland_2009-08-27_3; Mulholland_2009-11-04_2; Mulholland_2009-11-05_1; Mulholland_2009-11-08_1; Mulholland_2009-11-09_3; Mulholland_2009-11-10_3; Mulholland_2009-11-11_1; Mulholland_2009-11-18_1; Mulholland_2009-11-18_3; NA19750526; NA19750527; NA19750528; NA19750530; NA19750531; NIS; Nitrate; Nitrogen fixation rate, integrated per day; Nitrogen fixation rate, whole seawater; North Atlantic; Northeast Atlantic; North Pacific; Pacific; Phosphate; PUMP; Rahav_2009-07-13_1; Rahav_2009-07-14_1; Rahav_2009-07-16_1; Rahav_2009-12-07_1; Rees2004-03-05/01; Rees2004-04-05; Rees2004-05-16; Rees2004-05-19/01; Rees2004-05-21/01; Rees2004-07-05/01; Rees2004-09-05/01; Roger A. Revelle; RV Kilo Moana; Salinity; Sample comment; Sample method; Sargasso Sea; SargassoSea_1973-09-17; SargassoSea_1973-09-19; SargassoSea_1973-09-20; SargassoSea_1973-09-21; SargassoSea_1973-09-28; SargassoSea_1973-09-29; SargassoSea_1973-10-01; SargassoSea_1973-10-02; SargassoSea_1973-10-03; SargassoSea_1974-02-06; SargassoSea_1974-02-08; SargassoSea_1974-02-11; SargassoSea_1974-02-13; SargassoSea_1974-02-14; SargassoSea_1974-02-16; SargassoSea_1974-02-17; SargassoSea_1974-02-18; SargassoSea_1974-02-19; SargassoSea_1974-02-20; SargassoSea_1974-02-21; SargassoSea_1974-02-26;
    Type: Dataset
    Format: text/tab-separated-values, 5926 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hoogakker, Babette A A; Rohling, Eelco J; Palmer, Martin R; Tyrrell, Toby; Rothwell, Robin Guy (2006): Underlying causes for long-term global ocean d13C fluctuations over the last 1.20 Myr. Earth and Planetary Science Letters, 248(1-2), 15-29, https://doi.org/10.1016/j.epsl.2006.05.007
    Publication Date: 2024-01-09
    Description: Pleistocene stable carbon isotope (d13C) records from surface and deep dwelling foraminifera in all major ocean basins show two distinct long-term carbon isotope fluctuations since 1.00 Ma. The first started around 1.00 Ma and was characterised by a 0.35 per mil decrease in d13C values until 0.90 Ma, followed by an increase of 0.60 per mil lasting until 0.50 Ma. The subsequent fluctuation started with a 0.40 per mil decrease between 0.50 and 0.25 Ma, followed by an increase of 0.30 per mil between 0.25 and 0.10 Ma. Here, we evaluate existing evidence and various hypotheses for these global Pleistocene d13C fluctuations and present an interpretation, where the fluctuations most likely resulted from concomitant changes in the burial fluxes of organic and inorganic carbon due to ventilation changes and/or changes in the production and export ratio. Our model indicates that to satisfy the long-term 'stability' of the Pleistocene lysocline, the ratio between the amounts of change in the organic and inorganic carbon burial fluxes would have to be close to a 1:1 ratio, as deviations from this ratio would lead to sizable variations in the depth of the lysocline. It is then apparent that the mid-Pleistocene climate transition, which, apart from the glacial cycles, represents the most fundamental change in the Pleistocene climate, was likely not associated with a fundamental change in atmospheric pCO2. While recognising that high frequency glacial/interglacial cycles are associated with relatively large (100 ppmv) changes in pCO2, our model scenario (with burial changes close to a 1:1 ratio) produces a maximum long-term variability of only 20 ppmv over the fluctuation between 1.00 and 0.50 Ma.
    Keywords: AGE; Deep Sea Drilling Project; DSDP; Ocean Drilling Program; ODP; δ13C, stacked
    Type: Dataset
    Format: text/tab-separated-values, 1192 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-16
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Carbon, inorganic, dissolved; Carbonate ion; Carbon dioxide; DATE/TIME; EPOCA; European Project on Ocean Acidification; FerryBox system; Fluorescence; Fluorescence determination; Julian day; LATITUDE; LONGITUDE; Nitrate and Nitrite; Oxygen; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phosphate; Potentiometric titration, VINDTA (marianda); Revelle factor; Salinity; Sample ID; Seal QuAAtro SFA Analyzer, Seal Analytical, 800 TM; Silicon; Temperature, water; Titration, Winkler
    Type: Dataset
    Format: text/tab-separated-values, 11798 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-03-14
    Keywords: Calcium carbonate production of carbon; Calcium carbonate production of carbon, standard deviation; Coccolithophoridae, total; Cruise/expedition; DATE/TIME; DEPTH, water; Emiliania huxleyi; Incubation duration; LATITUDE; LONGITUDE; Method comment; Ocean and sea region; Percentage; Primary production of carbon; Primary production of carbon, standard deviation; Principal investigator; Reference/source; Station label; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 35037 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Nisumaa, Anne-Marin; Pesant, Stephane; Bellerby, Richard G J; Delille, Bruno; Middelburg, Jack J; Orr, James C; Riebesell, Ulf; Tyrrell, Toby; Wolf-Gladrow, Dieter A; Gattuso, Jean-Pierre (2010): EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification. Earth System Science Data, 2(2), 167-175, https://doi.org/10.5194/essd-2-167-2010
    Publication Date: 2024-03-19
    Description: The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean acidification on marine organisms and communities but few have provided details concerning full carbonate chemistry and complementary observations. Additionally, carbonate system variables are often reported in different units, calculated using different sets of dissociation constants and on different pH scales. Hence the direct comparison of experimental results has been problematic and often misleading. The need was identified to (1) gather data on carbonate chemistry, biological and biogeochemical properties, and other ancillary data from published experimental data, (2) transform the information into common framework, and (3) make data freely available. The present paper is the outcome of an effort to integrate ocean carbonate chemistry data from the literature which has been supported by the European Network of Excellence for Ocean Ecosystems Analysis (EUR-OCEANS) and the European Project on Ocean Acidification (EPOCA). A total of 185 papers were identified, 100 contained enough information to readily compute carbonate chemistry variables, and 81 data sets were archived at PANGAEA - The Publishing Network for Geoscientific & Environmental Data. This data compilation is regularly updated as an ongoing mission of EPOCA.
    Keywords: EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Geographic name/locality; Name; Not applicable; Observation; ORDINAL NUMBER; Parameter; Reference/source; Species; Uniform resource locator/link to source data file
    Type: Dataset
    Format: text/tab-separated-values, 1792 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Charalampopoulou, Anastasia; Poulton, Alex J; Tyrrell, Toby; Lucas, Mike (2011): Irradiance and pH affect coccolithophore community composition on a transect between the North Sea and the Arctic Ocean. Marine Ecology Progress Series, 431, 25-43, https://doi.org/10.3354/meps09140
    Publication Date: 2024-03-15
    Description: This data was collected during the 'ICE CHASER' cruise from the southern North Sea to the Arctic (Svalbard) in July-Aug 2008. This data consists of coccolithophore abundance, calcification and primary production rates, carbonate chemistry parameters and ancillary data of macronutrients, chlorophyll-a, average mixed layer irradiance, daily irradiance above the sea surface, euphotic and mixed layer depth, temperature and salinity.
    Keywords: Acanthoica quattrospina; Aligosphaera robusta; Alisphaera extenta; Alisphaera gaudii; Alkalinity, total; Alkalinity, total, standard error; Ammonia; Ammonia, standard deviation; Aragonite saturation state; Arctic; Bicarbonate ion; Biomass/Abundance/Elemental composition; Braarudosphaera bigelowii; Calcidiscus leptoporus; Calcification/Dissolution; Calcification rate, standard deviation; Calcification rate of calcium carbonate; Calciopappus caudatus; Calciosolenia murrayi; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Calyptrosphaera sphaeroidea; Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Coast and continental shelf; Coccolithophoridae, total; Coccolithus pelagicus; Community composition and diversity; Corisphaera gracilis; Coulometry; CTD; DATE/TIME; DEPTH, water; Depth of the euphotic zone; Emiliania huxleyi; Emiliania huxleyi, coccoliths, detached; Entire community; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Field observation; Florisphaera profunda; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gephyrocapsa oceanica; Helicosphaera carteri; Helladosphaera cornifera; Homozygosphaera vercelii; Lachat QuickChem 8500 flow injection autoanalyser; LATITUDE; Light; LONGITUDE; Micro-diffusion technique of Paasche & Brubak 1994 modified by Balch etal 2000; Nitrate and Nitrite; Nitrate and Nitrite, standard deviation; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Ophiaster formosus; Ophiaster hydroideus; Ophiaster sp.; Palusphaera vandelii; Pappomonas sp.; Pappomonas virgulosa; Papposphaera arctica; Papposphaera lepida; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Phosphate, standard deviation; Phytoplankton, unknown; Pigments, Turner fluorometer; Polar; Primary production/Photosynthesis; Primary production of carbon, standard deviation; Primary production of carbon per day; Radiation, photosynthetically active; Rhabdosphaera xiphos; Salinity; Sample ID; Saturnulus helianthiformis; Scanning electron microscope (Leo 1450VP, Carl Zeiss) with software SmartSEM; Semi-closed-cell titration (Dickson et al. 2007); Silicate; Silicate, standard deviation; Sphaerocalyptra sp.; Syracosphaera bannockii; Syracosphaera borealis; Syracosphaera corolla; Syracosphaera exigua; Syracosphaera marginiporata; Syracosphaera molischii; Syracosphaera nana; Syracosphaera ossa; Syracosphaera sp.; Syracosphaera tumularis; Temperate; Temperature, water; Wigwamma sp.
    Type: Dataset
    Format: text/tab-separated-values, 5467 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-03-15
    Description: It has been proposed that increasing levels of pCO2 in the surface ocean will lead to more partitioning of the organic carbon fixed by marine primary production into the dissolved rather than the particulate fraction. This process may result in enhanced accumulation of dissolved organic carbon (DOC) in the surface ocean and/or concurrent accumulation of transparent exopolymer particles (TEPs), with important implications for the functioning of the marine carbon cycle. We investigated this in shipboard bioassay experiments that considered the effect of four different pCO2 scenarios (ambient, 550, 750 and 1000 µatm) on unamended natural phytoplankton communities from a range of locations in the northwest European shelf seas. The environmental settings, in terms of nutrient availability, phytoplankton community structure and growth conditions, varied considerably between locations. We did not observe any strong or consistent effect of pCO2 on DOC production. There was a significant but highly variable effect of pCO2 on the production of TEPs. In three of the five experiments, variation of TEP production between pCO2 treatments was caused by the effect of pCO2 on phytoplankton growth rather than a direct effect on TEP production. In one of the five experiments, there was evidence of enhanced TEP production at high pCO2 (twice as much production over the 96 h incubation period in the 750 matm treatment compared with the ambient treatment) independent of indirect effects, as hypothesised by previous studies. Our results suggest that the environmental setting of experiments (community structure, nutrient availability and occurrence of phytoplankton growth) is a key factor determining the TEP response to pCO2 perturbations.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Coast and continental shelf; Coulometric titration; D366_E1; D366_E2; D366_E3; D366_E4; D366_E5; Entire community; Event label; EXP; Experiment; Flag; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Nitrate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Phytoplankton; Potentiometric titration; Salinity; Silicate; Temperate; Temperature, water; Time in hours; Transparent exopolymer particles as Gum Xanthan equivalents per volume; Treatment; UKOA; United Kingdom Ocean Acidification research programme
    Type: Dataset
    Format: text/tab-separated-values, 12066 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-03-15
    Description: The ongoing oceanic uptake of anthropogenic carbon dioxide (CO2) is significantly altering the carbonate chemistry of seawater, a phenomenon referred to as ocean acidification. Experimental manipulations have been increasingly used to gauge how continued ocean acidification will potentially impact marine ecosystems and their associated biogeochemical cycles in the future; however, results amongst studies, particularly when performed on natural communities, are highly variable, which may reflect community/environment-specific responses or inconsistencies in experimental approach. To investigate the potential for identification of more generic responses and greater experimentally reproducibility, we devised and implemented a series (n = 8) of short-term (2-4 days) multi-level (〉=4 conditions) carbonate chemistry/nutrient manipulation experiments on a range of natural microbial communities sampled in Northwest European shelf seas. Carbonate chemistry manipulations and resulting biological responses were found to be highly reproducible within individual experiments and to a lesser extent between geographically separated experiments. Statistically robust reproducible physiological responses of phytoplankton to increasing pCO2, characterised by a suppression of net growth for small-sized cells (〈10 µm), were observed in the majority of the experiments, irrespective of natural or manipulated nutrient status. Remaining between-experiment variability was potentially linked to initial community structure and/or other site-specific environmental factors. Analysis of carbon cycling within the experiments revealed the expected increased sensitivity of carbonate chemistry to biological processes at higher pCO2 and hence lower buffer capacity. The results thus emphasise how biogeochemical feedbacks may be altered in the future ocean.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, particulate; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Ciliates; Coast and continental shelf; Coccospheres; Community composition and diversity; Coulometric titration; D366_E1; D366_E2; D366_E2b; D366_E3; D366_E4; D366_E4b; D366_E5; D366_E5b; Diatoms; Dinoflagellates; Entire community; Event label; EXP; Experiment; Flag; Flagellates; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Macro-nutrients; Nanoflagellates, heterotrophic; Nitrate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Photosynthetic efficiency; Plankton; Potentiometric titration; Primary production, carbon assimilation (24 hr.); Primary production/Photosynthesis; Salinity; Silicate; Synechococcus; Temperate; Temperature, water; Time in hours; Treatment; UKOA; United Kingdom Ocean Acidification research programme
    Type: Dataset
    Format: text/tab-separated-values, 16897 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hauton, C; Tyrrell, Toby; Williams, J (2009): The subtle effects of sea water acidification on the amphipod Gammarus locusta. Biogeosciences, 6(8), 1479-1489, https://doi.org/10.5194/bg-6-1479-2009
    Publication Date: 2024-03-15
    Description: We report an investigation of the effects of increases in pCO2 on the survival, growth and molecular physiology of the neritic amphipod Gammarus locusta which has a cosmopolitan distribution in estuaries. Amphipods were reared from juvenile to mature adult in laboratory microcosms at three different levels of pH in nominal range 8.1-7.6. Growth rate was estimated from weekly measures of body length. At sexual maturity the amphipods were sacrificed and assayed for changes in the expression of genes coding for a heat shock protein (hsp70 gene) and the metabolic enzyme glyceraldehyde-3-phosphate dehydrogenase (gapdh gene). The data show that the growth and survival of this species is not significantly impacted by a decrease in sea water pH of up to 0.5 units. Quantitative real-time PCR analysis indicated that there was no significant effect of growth in acidified sea water on the sustained expression of the hsp70 gene. There was a consistent and significant increase in the expression of the gapdh gene at a pH of ~7.5 which, when combined with observations from other workers, suggests that metabolic changes may occur in response to acidification. It is concluded that sensitive assays of tissue physiology and molecular biology should be routinely employed in future studies of the impacts of sea water acidification as subtle effects on the physiology and metabolism of coastal marine species may be overlooked in conventional gross "end-point" studies of organism growth or mortality.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Arthropoda; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Conductivity meter (WTW, Weilheim, Gemany); EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experiment day; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gammarus locusta; Gammarus locusta, survival; Hauton_etal_09; Laboratory experiment; Light:Dark cycle; Measured; Mortality/Survival; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Salinity; SevenMulti pH meter (Mettler, Schwerzenbach, Switzerland); Single species; Temperate; Temperature, water; VINIDTA 3C instrument (Miranda, Kiel, Germany)
    Type: Dataset
    Format: text/tab-separated-values, 444 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...