GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Schlagwörter
Sprache
Erscheinungszeitraum
  • 11
    Publikationsdatum: 2019-09-23
    Beschreibung: Pore water and solid phase data for redox-sensitive metals (Mn, Fe, V, Mo and U) were collected on a transect across the Peru upwelling area (11°S) at water depths between 78 and 2025 m and bottom water oxygen concentrations ranging from ~0 to 93 µM. By comparing authigenic mass accumulation rates and diffusive benthic fluxes, we evaluate the respective mechanisms of trace metal accumulation, retention and remobilization across the oxygen minimum zone (OMZ) and with respect to oxygen fluctuations in the water column related to the El Nino Southern Oscillation (ENSO). Sediments within the permanent OMZ are characterized by diffusive uptake and authigenic fixation of U, V and Mo as well as diffusive loss of Mn and Fe across the benthic boundary. Some of the dissolved Mn and Fe in the water column re-precipitate at the oxycline and shuttle particle-reactive trace metals to the sediment surface at the lower and upper boundary of the OMZ. At the lower boundary, pore waters are not sufficiently sulfidic as to enable an efficient authigenic V and Mo fixation. As a consequence, sediments below the OMZ are preferentially enriched in U which is delivered via both in situ pre-cipitation and lateral supply of U-rich phosphorites from further upslope. Trace metal cycling on the Peruvian shelf is strongly affected by ENSO-related oxygen fluctuations in bottom water. During periods of shelf oxygenation, surface sediments receive particulate V and Mo with metal (oxyhydr)oxides that derive from both terrigenous sources and precipitation at the retreating oxycline. After the recurrence of anoxic conditions, metal (oxyhydr)oxides are reductively dissolved and the hereby liberated V and Mo are authigenically removed. This alternation between supply of particle-reactive trace metals during oxic periods and fixation during anoxic periods leads to a preferential accumulation of V and Mo compared to U on the Peruvian shelf. The decoupling of V, Mo and U accumulation is further accentuated by the varying susceptibility to re-oxidation of the different authigenic metal phases. While authigenic U and V are readily re-oxidized and recycled during periods of shelf oxygenation, the sequestration of Mo by authigenic pyrite is favored by the transient occurrence of oxidizing conditions.Our findings reveal that redox-sensitive trace metals respond in specific manner to short-term oxygen fluctuations in the water column. The relative enrichment patterns identified might be useful for the reconstruction of past OMZ extension and large-scale redox oscillations in the geological record.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2019-09-23
    Beschreibung: Benthic nitrogen (N) cycling was investigated at six stations along a transect traversing the Peruvian oxygen minimum zone (OMZ) at 11 °S. An extensive dataset including porewater concentration profiles and in situ benthic fluxes of nitrate (NO3–), nitrite (NO2–) and ammonium (NH4+) was used to constrain a 1–D reaction–transport model designed to simulate and interpret the measured data at each station. Simulated rates of nitrification, denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) by filamentous large sulfur bacteria (e.g. Beggiatoa and Thioploca) were highly variable throughout the OMZ yet clear trends were discernible. On the shelf and upper slope (80 – 260 m water depth) where extensive areas of bacterial mats were present, DNRA dominated total N turnover (less-than-or-equals, slant 2.9 mmol N m–2 d–1) and accounted for greater-or-equal, slanted 65 % of NO3– + NO2– uptake by the sediments from the bottom water. Nonetheless, these sediments did not represent a major sink for dissolved inorganic nitrogen (DIN = NO3– + NO2– + NH4+) since DNRA reduces NO3– and, potentially NO2–, to NH4+. Consequently, the shelf and upper slope sediments were recycling sites for DIN due to relatively low rates of denitrification and high rates of ammonium release from DNRA and ammonification of organic matter. This finding contrasts with the current opinion that sediments underlying OMZs are a strong sink for DIN. Only at greater water depths (300 – 1000 m) did the sediments become a net sink for DIN. Here, denitrification was the major process (less-than-or-equals, slant 2 mmol N m–2 d–1) and removed 55 – 73 % of NO3– and NO2– taken up by the sediments, with DNRA and anammox accounting for the remaining fraction. Anammox was of minor importance on the shelf and upper slope yet contributed up to 62 % to total N2 production at the 1000 m station. The results indicate that the partitioning of oxidized N (NO3–, NO2–) into DNRA or denitrification is a key factor determining the role of marine sediments as DIN sinks or recycling sites. Consequently, high measured benthic uptake rates of oxidized N within OMZs do not necessarily indicate a loss of fixed N from the marine environment.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    facet.materialart.
    Unbekannt
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 57 (3). pp. 851-867.
    Publikationsdatum: 2019-09-23
    Beschreibung: Benthic fluxes of dissolved ferrous iron (Fe2+) and phosphate (TPO4) were quantified by in situ benthic chamber incubations and pore-water profiles along a depth transect (11°S, 80–1000 m) across the Peruvian oxygen minimum zone (OMZ). Bottom-water O2 levels were 〈 2 µmol L-1 down to 500-m water depth, and increased to ~40 µmol L-1 at 1000 m. Fe2+ fluxes were highest on the shallow shelf (maximum 316 mmol m-2 yr-1), moderate (15.4 mmol m-2 yr-1) between 250 m and 600 m, and negligible at deeper stations. In the persistent OMZ core, continuous reduction of Fe oxyhydroxides results in depletion of sedimentary Fe :Al ratios. TPO4 fluxes were high (maximum 292 mmol m-2 yr-1) throughout the shelf and the OMZ core in association with high organic carbon degradation rates. Ratios between organic carbon degradation and TPO4 flux indicate excess release of P over C when compared to Redfield stoichiometry. Most likely, this is caused by preferential P release from organic matter, dissolution of fish debris, and/or P release from microbial mat communities, while Fe oxyhydroxides can only be inferred as a major P source on the shallow shelf. The benthic fluxes presented here are among the highest reported from similar, oxygen-depleted environments and highlight the importance of sediments underlying anoxic water bodies as nutrient sources to the ocean. The shelf is particularly important as the periodic passage of coastal trapped waves and associated bottom-water oxygenation events can be expected to induce a transient biogeochemical environment with highly variable release of Fe2+ and TPO4.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2019-09-23
    Beschreibung: Current de-oxygenation of the oceans is associated with severe habitat loss and distinct changes in the species composition of bentho-pelagic communities. We investigated the distributions of epibenthic megafauna across the Peruvian OMZ (11°S) at water depths ranging from ∼80 to 1000 m water depth using sea floor images. Likely controls of distributions were adressed by combining the abundances of major groups with geochemical parameters and sea-floor topography. In addition to bottom-water oxygen levels and organic-carbon availability, particular emphasis is laid on the effects of local hydrodynamics. Beside the occurrence of microbial mats at the shelf and upper slope, distinct zones of highly abundant megafauna, dominated by gastropods (900 ind. m−2), ophiuroids (140 ind. m−2), and pennatulaceans (20 ind. m−2), were observed at the lower boundary of the OMZ. Their distribution extended from 460 m water depth (O2 levels 〈 2 μM), where gastropods were abundant, to 680 m (O2 ∼6 μM) where epifaunal abundances declined sharply. Bottom water O2 represents a major factor that limits the ability of metazoans to invade deeply into the OMZ where they could have access to labile organic carbon. However, depending on their feeding mode, the distribution of organisms appeared to be related to local hydrodynamics caused by the energy dissipation of incipient internal M2 tides affecting the suspension, transport and deposition of food particles. This was particularly evident in certain sections of the investigated transect. At these potentially critical sites, energy dissipation of internal tides is associated with high bottom shear stress and high turbulences and coincides with elevated turbidity levels in the benthic boundary layer, increased Zr/Al-ratios, low sedimentation rates as well as a shift in the grain size towards coarser particles. In or near such areas, abundant suspension-feeding organisms, such as ophiuroids, pennatulaceans, and tunicates were present, whereas deposit-feeding gastropods were absent. The influence of local hydrodynamic conditions on the distribution of epibenthic organisms has been neglected in OMZ studies, although it has been considered in other settings.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    facet.materialart.
    Unbekannt
    In:  [Poster] In: Ocean Sciences Meeting 2010 "Oxygen Minimum Zones and Climate Change: Observations and Prediction IV", 22.02.-26.02.2010, Portland, Oregon, USA . EOS Transactions : Ocean Sciences Meeting Supplement ; BO35C-09 .
    Publikationsdatum: 2012-02-23
    Beschreibung: Oxygen Minimum Zones (OMZ) are key regions with respect to carbon and nutrient cycling as well as biological productivity of the global ocean. The Peruvian OMZ is one of the largest oxygen deficient water bodies worldwide. It impinges on the continental margin at water depths between ~ 50 and 750 m where oxygen levels of 〈 10 µM strongly influence biogeochemical processes and cycling of redox-sensitive elements. During Meteor cruise M77 in 2008 benthic exchange processes were studied by pore water analyses of surface sediments and benthic landers along a shelf slope transect at 11°S (water depth: 80-1000 m, O2: 1-40 µM). Benthic fluxes of iron, phosphate and silicate across the sediment-water interface were calculated using concentration gradients in pore waters and benthic chamber incubations. In most cases both approaches yielded similar results, thus diffusive fluxes from pore water data can be used as good approximations for total benthic fluxes, and hence are a useful alternative for quantification at sites where no lander deployments were conducted. Silicate fluxes decrease with water depth and distance from the coast which are important parameters controlling the export flux from primary production and input of terrigeneous material. Their magnitudes are among the highest reported so far (up to 3900 mmol m-2 yr-1 for in situ chamber fluxes) and reflect the high sedimentary input of biogenic opal in this productive upwelling zone. It is well known that iron and phosphorus are preferentially released from sediments under oxygen deficient conditions. Cross margin patterns of pore water profiles and exchange fluxes demonstrate this clear impact of oxygen availability on iron and phosphate mobilization. High subsurface peaks at the stations within the core of the OMZ (50-450 m) indicate a shift of the zone of dissimilatory iron reduction towards the sediment water interface. Iron and phosphate fluxes are highest at sites at the lower edge of the OMZ (O2 ~ 2 µM, ~ 400 m) and abruptly decrease at 700 m water depth where oxygen concentrations exceed 10 µM. However, considerable scatter in the data suggests that relationships controlling benthic exchange cannot be related to water depth and oxygen availability alone, but must be much more complex. Possible factors controlling variations of benthic fluxes on smaller scales are hydrodynamics and topographic features of the seafloor that may affect regional sediment accumulation rates.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2013-05-22
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2022-01-31
    Beschreibung: Highlights • next to organic matter degradation, bioirrigation and bottom water percolation through permeable surface sediments enhances benthic TPO43- and Fe2+ release • changes in bottom water oxygenation induce slight changes benthic TPO43- and Fe2+ release rates measured in 2011 and 2014 • deoxygenation experiments imply enhanced TPO43- and Fe2+ release at ongoing deoxygenation in the Mauritanian OMZ Abstract Benthic fluxes of total dissolved phosphate (TPO43-), dissolved iron (Fe2+), and dissolved inorganic carbon (DIC) were determined in situ using benthic chambers at nine stations along a depth transect between 47 and 1108 m water depth at 18 °N off Mauritania (NW Africa) during the upwelling season in 2014 (RV Meteor cruise M107). Bottom water oxygen (O2) concentrations were always ≥ 25 µM, and all fluxes (TPO43-, Fe2+, DIC) were consistently directed from the sediments into the bottom water. The highest benthic TPO43- release of 0.2 ± 0.07 mmol m2 d-1 was found at 47 m water depth (50 µM O2). The highest diffusive Fe2+ flux of 0.03 mmol m2 d-1, determined from porewater Fe2+ concentrations, occurred at 67 m water depth (27 µM O2). This was much lower than the detrital Fe supply as indicated by constant Fe/Al ratios along the depth transect. TPO43- release rates decreased concurrently with DIC flux and water depth. A difference of up to one order of magnitude between benthic chamber and diffusive TPO43- fluxes indicated that the total TPO43- release was strongly enhanced by bioirrigation. The observed fluxes were similar to those measured during an earlier cruise in 2011, generally indicating comparable release rates during both upwelling seasons. Furthermore, ex situ oxygen manipulation experiments showed an increase of the nutrient release (e.g. TPO43-, Fe2+) after seven days of anoxic bottom water conditions. The fluxes were enhanced by a factor of 1.4 for P and 7.3 for Fe compared to the measured release under natural conditions and reached values as high as those measured in the anoxic oxygen minimum zone off Peru. Our observations support the hypothesis that increasing deoxygenation of the oceans will likely enhance sedimentary TPO43- and Fe2+ release and thus contribute to a positive feedback mechanism with increasing nutrient levels and increased ocean productivity.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Dale, Andy W; Sommer, Stefan; Ryabenko, Evgenia; Noffke, Anna; Bohlen, Lisa; Wallmann, Klaus; Stolpovsky, Konstantin; Greinert, Jens; Pfannkuche, Olaf (2014): Benthic nitrogen fluxes and fractionation of nitrate in the Mauritanian oxygen minimum zone (Eastern Tropical North Atlantic). Geochimica et Cosmochimica Acta, 134, 234-256, https://doi.org/10.1016/j.gca.2014.02.026
    Publikationsdatum: 2024-04-18
    Beschreibung: We present sedimentary geochemical data and in situ benthic flux measurements of dissolved inorganic nitrogen (DIN: NO3-, NO2-, NH4+) and oxygen (O2) from 7 sites with variable sand content along 18°N offshore Mauritania (NW Africa). Bottom water O2 concentrations at the shallowest station were hypoxic (42 µM) and increased to 125 µM at the deepest site (1113 m). Total oxygen uptake rates were highest on the shelf (-10.3 mmol O2 /m2 d) and decreased quasi-exponentially with water depth to -3.2 mmol O2 /m2 d. Average denitrification rates estimated from a flux balance decreased with water depth from 2.2 to 0.2 mmol N /m2 d. Overall, the sediments acted as net sink for DIN. Observed increases in delta 15NNO3 and delta 18ONO3 in the benthic chamber deployed on the shelf, characterized by muddy sand, were used to calculate apparent benthic nitrate fractionation factors of 8.0 pro mille (15epsilon app) and 14.1 pro mille (18epsilon app). Measurements of delta 15NNO2 further demonstrated that the sediments acted as a source of 15N depleted NO2-. These observations were analyzed using an isotope box model that considered denitrification and nitrification of NH4+ and NO2-. The principal findings were that (i) net benthic 14N/15N fractionation (epsilon DEN) was 12.9 ± 1.7pro mille, (ii) inverse fractionation during nitrite oxidation leads to an efflux of isotopically light NO2- (-22 ± 1.9 pro mille), and (iii) direct coupling between nitrification and denitrification in the sediment is negligible. Previously reported epsilon DEN for fine-grained sediments are much lower (4-8 pro mille). We speculate that high benthic nitrate fractionation is driven by a combination of enhanced porewater-seawater exchange in permeable sediments and the hypoxic, high productivity environment. Although not without uncertainties, the results presented could have important implications for understanding the current state of the marine N cycle.
    Schlagwort(e): Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754
    Materialart: Dataset
    Format: application/zip, 57 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2024-04-18
    Schlagwort(e): Alkalinity, total; Ammonium; Barium; Boron; Bromine; Calcium; Calcium carbonate; Carbon, organic, total; Carbon, total; Chloride; Climate - Biogeochemistry Interactions in the Tropical Ocean; DEPTH, sediment/rock; Element analyser CNS, Carlo Erba NA1500; Hydrogen sulfide; Inductively coupled plasma atomic emission spectroscope (ICP-AES); Iodide; Ion chromatography; Iron; Lithium; M77/1; M77/1_397-1; Magnesium; Manganese; Meteor (1986); Multicorer with television; Nitrate; Nitrite; Nitrogen, inorganic; Phosphate; Photometry; Pore number; Porosity, fractional; Potassium; SFB754; Silicate; Silicon; Sodium; Strontium; Sulfate; Sulfur, total; Titration, Pavlova; TVMUC; Water in rock
    Materialart: Dataset
    Format: text/tab-separated-values, 604 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2024-04-18
    Schlagwort(e): Alkalinity, total; Ammonium; Barium; Boron; Bromine; Calcium; Calcium carbonate; Carbon, organic, total; Carbon, total; Chloride; Climate - Biogeochemistry Interactions in the Tropical Ocean; DEPTH, sediment/rock; Element analyser CNS, Carlo Erba NA1500; Hydrogen sulfide; Inductively coupled plasma atomic emission spectroscope (ICP-AES); Iodide; Ion chromatography; Iron; Lithium; M77/1; M77/1_455-1; Magnesium; Manganese; Meteor (1986); MUC 21; Multicorer with television; Nitrite; Nitrogen, inorganic; Phosphate; Photometry; Pore number; Porosity, fractional; Potassium; SFB754; Silicate; Silicon; Sodium; Strontium; Sulfate; Sulfur, total; Titration, Pavlova; TVMUC; Water in rock
    Materialart: Dataset
    Format: text/tab-separated-values, 366 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...