GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 11
    Publication Date: 2023-09-27
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-01-31
    Description: Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr−1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr−1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr−1).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-01-31
    Description: The European Research Infrastructure Consortium “Integrated Carbon Observation System” (ICOS) aims at delivering high quality greenhouse gas (GHG) observations and derived data products (e.g., regional GHG-flux maps) for constraining the GHG balance on a European level, on a sustained long-term basis. The marine domain (ICOS-Oceans) currently consists of 11 Ship of Opportunity lines (SOOP – Ship of Opportunity Program) and 10 Fixed Ocean Stations (FOSs) spread across European waters, including the North Atlantic and Arctic Oceans and the Barents, North, Baltic, and Mediterranean Seas. The stations operate in a harmonized and standardized way based on community-proven protocols and methods for ocean GHG observations, improving operational conformity as well as quality control and assurance of the data. This enables the network to focus on long term research into the marine carbon cycle and the anthropogenic carbon sink, while preparing the network to include other GHG fluxes. ICOS data are processed on a near real-time basis and will be published on the ICOS Carbon Portal (CP), allowing monthly estimates of CO2 air-sea exchange to be quantified for European waters. ICOS establishes transparent operational data management routines following the FAIR (Findable, Accessible, Interoperable, and Reusable) guiding principles allowing amongst others reproducibility, interoperability, and traceability. The ICOS-Oceans network is actively integrating with the atmospheric (e.g., improved atmospheric measurements onboard SOOP lines) and ecosystem (e.g., oceanic direct gas flux measurements) domains of ICOS, and utilizes techniques developed by the ICOS Central Facilities and the CP. There is a strong interaction with the international ocean carbon cycle community to enhance interoperability and harmonize data flow. The future vision of ICOS-Oceans includes ship-based ocean survey sections to obtain a three-dimensional understanding of marine carbon cycle processes and optimize the existing network design.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-01-31
    Description: This study evaluates the trends in anthropogenic carbon (Cant) in the different sub-basins of the Arctic Ocean between 1987 and 2015. Data were extracted from the GLODAPv2 data product as well as two GEOTRACERS cruises in the Arctic Ocean from 2015 and Cant was evaluated using the transient time distribution (TTD) approach. In the Nansen and Amundsen sub-basins, the Cant trend in the Atlantic Waters (AW, depths: 200–500 m) and dense AW (dAW, depths: 500–800 m) is about +0.7 µmol kg−1 yr−1. As we move into the Makarov and West Canadian sub-basins, the Cant trend in the AW and dAW is smaller. The upper Polar Deep Water (uPDW, depths: 800–1600 m) has a Cant trend of about +0.4–0.5 µmol kg−1 yr−1 in the Nansen, Amundsen and West Canadian sub-basins. The trend is smallest in the South Canadian sub-basin, with a value of about +0.2 µmol kg−1 yr−1. Ventilation primarily governs Cant trends while the influence of the Revelle factor plays a secondary role. The increase in the Cant column inventory is estimated to be 0.7–1.0 mol C m−2 yr−1 in the Nansen, Amundsen and Makarov sub-basins. By extrapolating the results from our defined sub-basins to the full Arctic Ocean, we estimate an Cant accumulation of 25 Tg C yr−1 in the Arctic Ocean and an inventory of about 3.6–3.9 Pg C between 2005 and 2015.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-05-12
    Description: Research Infrastructures (RIs) are large-scale facilities encompassing instruments, resources, data and services used by the scientific community to conduct high-level research in their respective fields. The development and integration of marine environmental RIs as European Research Vessel Operators [ERVO] (2020) is the response of the European Commission (EC) to global marine challenges through research, technological development and innovation. These infrastructures (EMSO ERIC, Euro-Argo ERIC, ICOS-ERIC Marine, LifeWatch ERIC, and EMBRC-ERIC) include specialized vessels, fixed-point monitoring systems, Lagrangian floats, test facilities, genomics observatories, bio-sensing, and Virtual Research Environments (VREs), among others. Marine ecosystems are vital for life on Earth. Global climate change is progressing rapidly, and geo-hazards, such as earthquakes, volcanic eruptions, and tsunamis, cause large losses of human life and have massive worldwide socio-economic impacts. Enhancing our marine environmental monitoring and prediction capabilities will increase our ability to respond adequately to major challenges and efficiently. Collaboration among European marine RIs aligns with and has contributed to the OceanObs’19 Conference statement and the objectives of the UN Decade of Ocean Science for Sustainable Development (2021–2030). This collaboration actively participates and supports concrete actions to increase the quality and quantity of more integrated and sustained observations in the ocean worldwide. From an innovation perspective, the next decade will increasingly count on marine RIs to support the development of new technologies and their validation in the field, increasing market uptake and produce a shift in observing capabilities and strategies.
    Description: Published
    Description: 180
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-02-15
    Description: The ambition of INRAROS Initial Requirement Mapping was to define the high-level requirements of an integrated Arctic Observing System (iAOS) based on identification of the major societal drivers of a sustained observing system in the Arctic region, driven by issues affecting the entire area and expressed through international agreements (i.e. climate, environment, biodiversity, sustaining ecosystem services, improving the livelihoods of indigenous and local communities, support to maritime safety, etc.). The work was based on knowledge collected from literature studies, projects, programmes and workshops, and cover an evaluation of feasibility, readiness, and impact to provide guidance on future network design. It was decided to focus on the individual thematic areas - meteorology, terrestrial, cryosphere, sea ice and ocean – separately with the purpose of capturing the special requirements, phenomena and essential variables to observe within each of them. It very well known that these thematic areas are closely interconnected and have different levels of maturity in scientific understanding of the phenomena, definitions of essential variables and observing capacity. It is therefore a big challenge to INTAROS to use the collected information to design an integrated multipurpose and multiplatform observations system to optimises efforts and costs. Observations serve several purposes: •Process studies to gain fundamental understanding of phenomena, processes and interrelationships, which is fundamental for development of reliable forecasting models •Establish long timeseries of Essential variables at key locations to monitor variability and changes in the system •To assimilate into as well as to validate models The detailed analysis of phenomena and observation requirements for the entire region given in this report reveals the following conclusions: •The Arctic is a region very sensitive to environmental changes. There is a very close interrelation and delicate balance between the five thematic areas (atmosphere, terrestrial, cryosphere, sea ice and ocean) especially in relation to solar energy retainment and radiation budget and hydrological cycle. This has a great impact on physical, chemical and biological processes in the area. •Due to the hostile environment, there is a great lack of basic observations in the Arctic that can support scientific understanding of key processes. Most of the existing data are collected via time limited research project. This lack of process knowledge is reflected in big errors in forecasting models – operational as well as climate. •It is therefore crucial to establish a sustained Integrated Arctic Observing System that in the short timeframe can increase fundamental scientific understanding of the complex and sensitive Arctic environment and in a longer timeframe can secure a robust basis for decision making to the benefit of the people living in the Arctic, the environment, the broader international society, and commercial activities. •It is foreseen that a future Arctic observation system will rely heavily on satellite observations supplemented more traditional in-situ platforms. Especially the ocean will use several other platforms such as ships, profiling floats, gliders, moorings, AUV’s etc. to monitor the interior of the Arctic Ocean. •In all countries around the Arctic, there are community based observing systems that represent a strong potential for further development. Existing activities shall form the natural basis for a future more intensive and integrated sustainable Arctic Observing System.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-02-26
    Description: The H2020 project Integrated Arctic Observation System (INTAROS) aspires to increase the temporal and geographic coverage of in situ observations and add new key geophysical and biogeochemical variables in selected regions of the Arctic. By using a combination of mature and new instruments and sensors in integration with existing observatories, INTAROS aims to fill selected gaps in the present-day system and build additional capacity of the Arctic monitoring networks for ocean and sea ice. Three reference sites have been selected as key locations for monitoring ongoing Arctic changes: Costal Greenland, paramount for freshwater output from the Greenland ice sheet; North of Svalbard (covering the region from shelf to deep basin) - the hot-spot for ocean-air-sea ice interactions, and heat and biological energy input to the European Arctic; and Fram Strait - the critical gateway for exchanges between the Arctic and the World oceans. The existing observatories in the reference sites have been extended with new moorings and novel autonomous instrumentation, in particular for biogeochemical measurements and sea ice observations. Bottom-mounted instruments have been also implemented for seismic observations. A distributed observatory for ocean and sea ice in the Arctic Ocean and sub-Arctic seas includes non-stationary components such as ice-tethered observing platforms, float, gliders, and ships of opportunities, collecting multidisciplinary observations, still missing from the Arctic regions. New sensors, integrated platforms and experimental set-ups are currently under implementation during a two-year long deployment phase (2018-2020) with an aim to evaluate their sustained use in a future iAOS. New observations will be used for integration of new data products, demonstration studies and stakeholder consultations, contributing also to ongoing and future long-term initiatives (e.g. SAON).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-09-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-10-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-11-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...