GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (4)
  • 1
    Publication Date: 2023-02-08
    Description: A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25‐50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s‐1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The vast majority of freshly produced oceanic dissolved organic carbon (DOC) is derived from marine phytoplankton, then rapidly recycled by heterotrophic microbes. A small fraction of this DOC survives long enough to be routed to the interior ocean, which houses the largest and oldest DOC reservoir. DOC reactivity depends upon its intrinsic chemical composition and extrinsic environmental conditions. Therefore, recalcitrance is an emergent property of DOC that is analytically difficult to constrain. New isotopic techniques that track the flow of carbon through individual organic molecules show promise in unveiling specific biosynthetic or degradation pathways that control the metabolic turnover of DOC and its accumulation in the deep ocean. However, a multivariate approach is required to constrain current carbon fluxes so that we may better predict how the cycling of oceanic DOC will be altered with continued climate change. Ocean warming, acidification, and oxygen depletion may upset the balance between the primary production and heterotrophic reworking of DOC, thus modifying the amount and/or composition of recalcitrant DOC. Climate change and anthropogenic activities may enhance mobilization of terrestrial DOC and/or stimulate DOC production in coastal waters, but it is unclear how this would affect the flux of DOC to the open ocean. Here, we assess current knowledge on the oceanic DOC cycle and identify research gaps that must be addressed to successfully implement its use in global scale carbon models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: This study traces dissolved organic matter (DOM) in different water masses of the Arctic Ocean and its effect on the distributions of trace elements (TEs; Fe, Cu, Mn, Ni, Zn, Cd) using fluorescent properties of DOM and the terrigenous biomarker lignin. The Nansen, Amundsen, and Makarov Basins were characterized by the influence of Atlantic water and the fluvial discharge of the Siberian rivers with high concentrations of terrigenous DOM (tDOM). The Canada Basin and the Chukchi Sea were characterized by Pacific water, modified through contact with productive shelf sediments with elevated levels of marine DOM. Within the surface layer of the Beaufort Gyre, meteoric water (river water and precipitation) was characterized by low concentrations of lignin and terrigenous DOM fluorescence proxies as DOM is removed during freezing. High-resolution in situ fluorescence profiles revealed that DOM distribution closely followed isopycnals, indicating the strong influence of sea-ice formation and melt, which was also reflected in strong correlations between DOM fluorescence and brine contributions. The relationship of DOM and hydrography to TEs showed that terrigenous and marine DOM were likely carriers of dissolved Fe, Ni, Cu from the Eurasian shelves into the central Arctic Ocean. Chukchi shelf sediments were important sources of dCd, dZn, and dNi, as well as marine ligands that bind and carry these TEs offshore within the upper halocline (UHC) in the Canada Basin. Our data suggest that tDOM components represent stronger ligands relative to marine DOM components, potentially facilitating the long-range transport of TE to the North Atlantic. Key Points Dissolved Organic Matter (DOM) distribution in the Arctic Ocean is largely controlled by sea ice formation and melt processes DOM distribution in the Arctic Ocean reveals its potential as a tracer for halocline formation and freshwater source assignments Terrigenous and marine DOM are carriers of trace elements from shelves to the open Arctic Ocean, but terrigenous DOM represent stronger ligands
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Dissolved lignin phenols, chromophoric dissolved organic matter (DOM), and in situ fluorescence were determined in waters of the Laptev Sea and major Arctic basins, and they were compared with dissolved iron (dFe) distributions to elucidate the sources, molecular characteristics and distributions of iron-binding ligands in the Arctic Ocean. In the Transpolar Drift region (TPD), concentrations of dFe were positively correlated with concentrations of lignin phenols and multiple optical proxies of DOM composition and source. Strong relationships between dFe and visible and ultraviolet wavelength fluorescent DOM indicated that vascular plant and algal-derived DOM contributed to the dFe-ligand pool. These observations are consistent with previous studies suggesting the association of dFe with humic terrigenous and marine organic ligands. The primary sources of iron-binding ligands appear to be the riverine discharge of terrigenous DOM, marine organic matter produced on the shelves, and degradation products of plankton-derived organic matter in the shelf sediments. A stronger relationship between dFe and visible wavelength CDOM fluorescence than with lignin phenols suggested the presence of multiple terrigenous ligands, such as aromatic tannins. The aromatic nature of these terrigenous ligands was indicated by a strong relationship between dFe and the absorption coefficient at 254 nm. A strong negative correlation between the p-hydroxyl to vanillyl lignin phenols ratio and dissolved iron concentrations indicated recently-discharged terrigenous DOM (tDOM) was an important source of iron-binding ligands. Given the strong relationships of marine and terrigenous DOM with dissolved iron, iron-binding functional groups appear to occur in diverse molecules of multiple sources. Examples of such iron-binding functional groups included catechols and carboxylates found in lignins and tannins of terrigenous origins and carboxyl-rich alicyclic molecules (CRAM) of terrigenous and marine origins. The observed dFe distributions in the Arctic Ocean could not be explained by the presence of a single ligand type, but rather by a potpourri of ligand molecules of varying concentrations and binding strengths. This molecular diversity of ligands and associated binding strengths ultimately controls the distribution and transport of dFe in the Arctic Ocean and beyond.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...