GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (3)
Document type
Publisher
Years
  • 1
    Publication Date: 2021-02-08
    Description: Silicon (Si) is the second most abundant element in the Earth’s crust and is an important nutrient in the ocean. The global Si cycle plays a critical role in regulating primary productivity and carbon cycling on the continents and in the oceans. Development of the analytical tools used to study the sources, sinks, and fluxes of the global Si cycle (e.g., elemental and stable isotope ratio data for Ge, Si, Zn, etc.) have recently led to major advances in our understanding of the mechanisms and processes that constrain the cycling of Si in the modern environment and in the past. Here, we provide background on the geochemical tools that are available for studying the Si cycle and highlight our current understanding of the marine, freshwater and terrestrial systems. We place emphasis on the geochemistry (e.g., Al/Si, Ge/Si, Zn/Si, δ13 C, δ15 N, δ18 O, δ30 Si) of dissolved and biogenic Si, present case studies, such as the Silicic Acid Leakage Hypothesis, and discuss challenges associated with the development of these environmental proxies for the global Si cycle. We also discuss how each system within the global Si cycle might change over time (i.e., sources, sinks, and processes) and the potential technical and conceptual limitations that need to be considered for future studies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-23
    Description: Certification of trace metals in seawater certified reference materials (CRMs) NASS-7 and CASS-6 is described. At the National Research Council Canada (NRC), column separation was performed to remove the seawater matrix prior to the determination of Cd, Cr, Cu, Fe, Pb, Mn, Mo, Ni, U, V, and Zn, whereas As was directly measured in 10-fold diluted seawater samples, and B was directly measured in 200-fold diluted seawater samples. High-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) was used for elemental analyses, with double isotope dilution for the accurate determination of B, Cd, Cr, Cu, Fe, Pb, Mo, Ni, U, and Zn in seawater NASS-7 and CASS-6, and standard addition calibration for As, Co, Mn, and V. In addition, all analytes were measured using standard addition calibration with triple quadrupole (QQQ)-ICPMS to provide a second set of data at NRC. Expert laboratories worldwide were invited to contribute data to the certification of trace metals in NASS-7 and CASS-6. Various analytical methods were employed by participants including column separation, co-precipitation, and simple dilution coupled to ICPMS detection or flow injection analysis coupled to chemiluminescence detection, with use of double isotope dilution calibration, matrix matching external calibration, and standard addition calibration. Results presented in this study show that majority of laboratories have demonstrated their measurement capabilities for the accurate determination of trace metals in seawater. As a result of this comparison, certified/reference values and associated uncertainties were assigned for 14 elements in seawater CRMs NASS-7 and CASS-6, suitable for the validation of methods used for seawater analysis.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights • Dissolved iron limits primary production in offshore South Pacific surface waters. • Phytoplankton is elevated in high-iron filaments in mesoscale eddies east of New Zealand. • Iron in these eddies is due to entrainment of high-iron coastal water into offshore water. • The resultant eddy-driven flux of iron supports production in the Subtropical Front. Abstract Subtropical and subantarctic waters either side of the southern hemisphere Subtropical Front are considered iron-limited, suggesting production within the front is dependent on a supply of iron from atmospheric deposition, zonal advection of coastal water, or upwelling. We present the results from a one-day biogeochemical survey in Subtropical Water east of the North Island, New Zealand, in a region where mesoscale cyclonic and anticyclonic eddies entrain chlorophyll in filaments around the eddies. There was no significant relationship between upper mixed layer chlorophyll and any physical or macronutrient quantity. However, chlorophyll was significantly positively correlated with dissolved iron. A simple model suggests that while vertical entrainment of iron into the upper mixed layer occurred, most of the dissolved iron in the eddy was due to entrainment of high-iron coastal water into low-iron offshore Subtropical Water, and that this iron supports primary production in otherwise iron-deficient water. We suggest that a significant component of the total primary production within the Subtropical Front may be determined by mesoscale eddy induced lateral advection of iron.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...