GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (2)
  • 1
    Publication Date: 2020-08-28
    Description: Anaerobic oxidation of methane (AOM) was shown to reduce methane emissions by over 50% in freshwater systems, its main natural contributor to the atmosphere. In these environments iron oxides can become main agents for AOM, but the underlying mechanism for this process has remained enigmatic. By conducting anoxic slurry incubations with lake sediments amended with 13C-labeled methane and naturally abundant iron oxides the process was evidenced by significant 13C-enrichment of the dissolved inorganic carbon pool and most pronounced when poorly reactive iron minerals such as magnetite and hematite were applied. Methane incorporation into biomass was apparent by strong uptake of 13C into fatty acids indicative of methanotrophic bacteria, associated with increasing copy numbers of the functional methane monooxygenase pmoA gene. Archaea were not directly involved in full methane oxidation, but their crucial participation, likely being mediators in electron transfer, was indicated by specific inhibition of their activity that fully stopped iron-coupled AOM. By contrast, inhibition of sulfur cycling increased 13C-methane turnover, pointing to sulfur species involvement in a competing process. Our findings suggest that the mechanism of iron-coupled AOM is accomplished by a complex microbe-mineral reaction network, being likely representative of many similar but hidden interactions sustaining life under highly reducing low energy conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-21
    Description: The vertical distribution of methane- and ammonia-oxidizing bacteria (MOB and AOB, respectively), and the physicochemical conditions in the chemocline of Lake Kinneret (Israel) were studied at a resolution of 10 cm from 16.2 to 17.7 m depth. Profiles of the chemical parameters indicated decreasing concentrations of methane (from 22.4 to 0.11 µmol l–1) and ammonia (from 14.2 to 8.4 µmol l–1) towards the water surface and in close proximity to the chemocline. The disappearance of methane coincided with methane oxidation that could be corroborated throughout this layer with highest rates at 17.4 to 17.6 m. Disappearance of ammonia could not be linked to ammonia oxidation exclusively. The genes pmoA and the homologous amoA (coding for subunit α of the methane and ammonia monooxygenase, respectively) were amplified by PCR. The products were analyzed by terminal restriction fragment length polymorphism (T-RFLP) and sequencing of clone libraries. The results demonstrated that different MOB and AOB communities are established along the concentration gradient within the narrow layer of the metalimnetic chemocline. Changes in the intensity of the T-RFLP peaks and the frequency of different groups of alpha- and gammaproteobacterial MOB, and betaproteobacterial AOB, coincided with the concentration gradients of methane, ammonia, nitrate, and oxygen in the chemocline. This suggests that different communities of MOB, and to a lesser extent AOB, contribute to the formation of chemical gradients of their particular substrates in the chemocline
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...