GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in German, C. R., Resing, J. A., Xu, G., Yeo, I. A., Walker, S. L., Devey, C. W., Moffett, J. W., Cutter, G. A., Hyvernaud, O., & Reymond, D. Hydrothermal activity and seismicity at teahitia seamount: Reactivation of the society islands hotspot? Frontiers in Marine Science, 7, (2020): 73, doi:10.3389/fmars.2020.00073.
    Description: Along mid-ocean ridges, submarine venting has been found at all spreading rates and in every ocean basin. By contrast, intraplate hydrothermal activity has only been reported from five locations, worldwide. Here we extend the time series at one of those sites, Teahitia Seamount, which was first shown to be hydrothermally active in 1983 but had not been revisited since 1999. Previously, submersible investigations had led to the discovery of low-temperature (≤30°C) venting associated with the summit of Teahitia Seamount at ≤1500 m. In December 2013 we returned to the same site at the culmination of the US GEOTRACES Eastern South Tropical Pacific (GP16) transect and found evidence for ongoing venting in the form of a non-buoyant hydrothermal plume at a depth of 1400 m. Multi-beam mapping revealed the same composite volcano morphology described previously for Teahitia including four prominent cones. The plume overlying the summit showed distinct in situ optical backscatter and redox anomalies, coupled with high concentrations of total dissolvable Fe (≤186 nmol/L) and Mn (≤33 nmol/L) that are all diagnostic of venting at the underlying seafloor. Continuous seismic records from 1986-present reveal a ∼15 year period of quiescence at Teahitia, following the seismic crisis that first stimulated its submersible-led investigation. Since 2007, however, the frequency of seismicity at Teahitia, coupled with the low magnitude of those events, are suggestive of magmatic reactivation. Separately, distinct seismicity at the adjacent Rocard seamount has also been attributed to submarine extrusive volcanism in 2011 and in 2013. Theoretical modeling of the hydrothermal plume signals detected suggest a minimum heat flux of 10 MW at the summit of Teahitia. Those model simulations can only be sourced from an area of low-temperature venting such as that originally reported from Teahitia if the temperature of the fluids exiting the seabed has increased significantly, from ≤30°C to ∼70°C. These model seafloor temperatures and our direct plume observations are both consistent with reports from Loihi Seamount, Hawaii, ∼10 year following an episode of seafloor volcanism. We hypothesize that the Society Islands hotspot may be undergoing a similar episode of both magmatic and hydrothermal reactivation.
    Description: Field work for this project was funded through NSF Awards to CG (OCE-1130870), JR (OCE-1237011), GC (OCE-1130245), and JM (OCE-1131731). Post-cruise, additional support was provided through NOAA Cooperative Agreement NA15OAR432006 and funding from WHOI and GEOMAR Helmholtz Centre for Ocean Research Kiel. The Réseau Sismique Polynésie was supported at LDG by the Commissariat à l’Energie Atomique et aux Energies Renouvelables. Open Access publication charges for this paper were provided by the Schmidt Ocean Institute.
    Keywords: hydrothermal ; seamount ; hotspot ; Teahitia ; Tahiti ; Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(10),(2021): e2021JB022228, https://doi.org/10.1029/2021JB022228.
    Description: Seafloor massive sulfide deposits form in remote environments, and the assessment of deposit size and composition through drilling is technically challenging and expensive. To aid the evaluation of the resource potential of seafloor massive sulfide deposits, three-dimensional inverse modeling of geophysical potential field data (magnetic and gravity) collected near the seafloor can be carried out to further enhance geologic models interpolated from sparse drilling. Here, we present inverse modeling results of magnetic and gravity data collected from the active mound at the Trans-Atlantic Geotraverse hydrothermal vent field, located at 26°08′N on the Mid-Atlantic Ridge, using autonomous underwater vehicle and submersible surveying. Both minimum-structure and surface geometry inverse modeling methods were utilized. Through deposit-scale magnetic modeling, the outer extent of a chloritized alteration zone within the basalt host rock below the mound was resolved, providing an indication of the angle of the rising hydrothermal fluid and the depth and volume of seawater/hydrothermal mixing zone. The thickness of the massive sulfide mound was determined by modeling the gravity data, enabling the tonnage of the mound to be estimated at 2.17 ± 0.44 Mt through this geophysics-based, noninvasive approach.
    Description: The authors would like to thank the captain, crew, and scientific team from the 2016 R/V Meteor M127 and 1994 R/V Yokosuka MODE'94 cruises for all their work collecting the data modeled in this study. C. Galley is funded through an NSERC Discovery Grant and Memorial University's School of Graduate Studies Grant.
    Description: 2022-03-29
    Keywords: Seafloor massive sulfide deposit ; Potential field modeling ; Inverse modeling ; Gravity ; Magnetics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-12-20
    Description: Marine geohazards pose a significant threat to the European coastal population and to the development of the Blue Economy. This Position Paper discusses the type, distribution and impact of marine geohazards on the European coastal regions and the Blue Economy, as well as what and how novel scientific approaches may broaden our understanding of their trigger mechanisms and drive a risk-mitigating European policy.
    Description: Challenge 6: Increase community resilience to ocean hazards; Challenge 7: Expand the Global Ocean Observing System.
    Description: Published
    Description: Refereed
    Keywords: Blue Economy ; Marine geohazards ; Coastal region
    Repository Name: AquaDocs
    Type: Book/Monograph/Conference Proceedings
    Format: 100pp
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-01-01
    Description: The spreading axis at many slow-spreading mid-ocean ridges is marked by an axial volcanic ridge. In this study, we use a combination of high-resolution remote sensing methods to elucidate the detailed nature of volcanoes in such a ridge. We find that the “hummocks” described in previous sidescan sonar studies are dome- or cone-shaped edifices, 5–150 m high with diameters of 30–330 m. We estimate they form quickly, in single eruptions, each of which may produce several hummocks. Hummock collapse is common and hummocks of all heights are prone to failure. Collapses generally occur down the regional seafloor slope, suggesting control by local topography. Approximately 33% of hummocks lose ~40% of their volume by collapse, so ~12% of all material erupted on the axial volcanic ridge is rapidly converted to talus. The higher porosity of these deposits may increase average upper crustal porosity by several percent, contributing 〉0.5 km s-1 to seismic velocity decrease in the upper oceanic crust, and may be one of the dominant mechanisms for increasing porosity in upper slow-spreading oceanic crust.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...